LaF_(3) was doped to the Mg(Al)solid solution alloy for enhancing the hydrogen absorption and desorption by ball milling.XRD was used to analyze the phases of the samples and the phase transition induced by hydrogenat...LaF_(3) was doped to the Mg(Al)solid solution alloy for enhancing the hydrogen absorption and desorption by ball milling.XRD was used to analyze the phases of the samples and the phase transition induced by hydrogenation and dehydrogenation.The microstructure and phase distribution were investigated by SEM and STEM.The hydrogen storage properties were measured by Sieverts method.For Mg_(0.93)Al_(0.07)−5wt.%LaF_(3) nanocomposite,the hydrogen storage kinetic properties were significantly improved by reducing the hydriding and dehydriding activation energies to 65 and 78 kJ/mol,respectively,and the dehydriding enthalpy was calculated to be 69.7 kJ/mol.The improved hydrogen storage properties were mainly attributed to the catalytic effects of the in situ formed nanostructure Al_(11)La_(3) and MgF_(2) together with the dissolving of Al in Mg lattice.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51779103)the Natural Science Foundation of Fujian Province,China(No.2021J011209)+1 种基金the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications(Xiamen University of Technology,fma2018007 and fma2020003)Fujian Provincial Key Laboratory of Naval Architecture and Ocean Engineering(Jimei University),China。
文摘LaF_(3) was doped to the Mg(Al)solid solution alloy for enhancing the hydrogen absorption and desorption by ball milling.XRD was used to analyze the phases of the samples and the phase transition induced by hydrogenation and dehydrogenation.The microstructure and phase distribution were investigated by SEM and STEM.The hydrogen storage properties were measured by Sieverts method.For Mg_(0.93)Al_(0.07)−5wt.%LaF_(3) nanocomposite,the hydrogen storage kinetic properties were significantly improved by reducing the hydriding and dehydriding activation energies to 65 and 78 kJ/mol,respectively,and the dehydriding enthalpy was calculated to be 69.7 kJ/mol.The improved hydrogen storage properties were mainly attributed to the catalytic effects of the in situ formed nanostructure Al_(11)La_(3) and MgF_(2) together with the dissolving of Al in Mg lattice.