The optimized color space is searched by using the wavelet scattering network in the KTH_TIPS_COL color image database for image texture classification. The effect of choosing the color space on the classification acc...The optimized color space is searched by using the wavelet scattering network in the KTH_TIPS_COL color image database for image texture classification. The effect of choosing the color space on the classification accuracy is investigated by converting red green blue (RGB) color space to various other color spaces. The results show that the classification performance generally changes to a large degree when performing color texture classification in various color spaces, and the opponent RGB-based wavelet scattering network outperforms other color spaces-based wavelet scattering networks. Considering that color spaces can be changed into each other, therefore, when dealing with the problem of color texture classification, converting other color spaces to the opponent RGB color space is recommended before performing the wavelet scattering network.展开更多
The virtual reality based motion simulation of the guide wire and the catheter inside specific vascular structures can benefit a lot for the endovascular intervention. A fast and well-performed collision cancellation ...The virtual reality based motion simulation of the guide wire and the catheter inside specific vascular structures can benefit a lot for the endovascular intervention. A fast and well-performed collision cancellation algorithm is proposed based on the geometric analysis and the angular propagation (AP), and a 3-D real-time interactive system is developed for the motion simulation of the guide wire and the catheter inside the specific patient vascular. The guide wire or the catheter is modeled as the "multi-body" representation and properties are defined by its intrinsic characteristics. The motion of the guide wire or the catheter inside the vascular is guided by the collision detection and the collision cancellation algorithm. Finally, a relaxation procedure is used to achieve more realistic status. Experimental results show that the behavior of the guide wire or the catheter depends on the defined parameters. The real-time simulation can be achieved. The result shows that the simulation system is effective and promising.展开更多
A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is const...A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.展开更多
A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to p...A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.展开更多
A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solve...A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.展开更多
基金The National Basic Research Program of China(No.2011CB707904)the National Natural Science Foundation of China(No.61201344,61271312,11301074)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK2012329)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023,20120092120036)
文摘The optimized color space is searched by using the wavelet scattering network in the KTH_TIPS_COL color image database for image texture classification. The effect of choosing the color space on the classification accuracy is investigated by converting red green blue (RGB) color space to various other color spaces. The results show that the classification performance generally changes to a large degree when performing color texture classification in various color spaces, and the opponent RGB-based wavelet scattering network outperforms other color spaces-based wavelet scattering networks. Considering that color spaces can be changed into each other, therefore, when dealing with the problem of color texture classification, converting other color spaces to the opponent RGB color space is recommended before performing the wavelet scattering network.
文摘The virtual reality based motion simulation of the guide wire and the catheter inside specific vascular structures can benefit a lot for the endovascular intervention. A fast and well-performed collision cancellation algorithm is proposed based on the geometric analysis and the angular propagation (AP), and a 3-D real-time interactive system is developed for the motion simulation of the guide wire and the catheter inside the specific patient vascular. The guide wire or the catheter is modeled as the "multi-body" representation and properties are defined by its intrinsic characteristics. The motion of the guide wire or the catheter inside the vascular is guided by the collision detection and the collision cancellation algorithm. Finally, a relaxation procedure is used to achieve more realistic status. Experimental results show that the behavior of the guide wire or the catheter depends on the defined parameters. The real-time simulation can be achieved. The result shows that the simulation system is effective and promising.
基金The National Natural Science Foundation of China (60272045) the Key Project of Ministry of Education of China.
文摘A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation.
文摘A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.
基金The National Natural Science Foundation of China(No.6120134461271312+7 种基金11301074)the Specialized Research Fund for the Doctoral Program of Higher Education(No.2011009211002320120092120036)the Program for Special Talents in Six Fields of Jiangsu Province(No.DZXX-031)the Natural Science Foundation of Jiangsu Province(No.BK2012329BK2012743)the United Creative Foundation of Jiangsu Province(No.BY2014127-11)the"333"Project(No.BRA2015288)
文摘A newalgorithm, called Magnitude Cut, to recover a signal from its phase in the transform domain, is proposed.First, the recovery problem is converted to an equivalent convex optimization problem, and then it is solved by the block coordinate descent( BCD) algorithm and the interior point algorithm. Finally, the one-dimensional and twodimensional signal reconstructions are implemented and the reconstruction results under the Fourier transform with a Gaussian random mask( FTGM), the Cauchy wavelets transform( CWT), the Fourier transform with a binary random mask( FTBM) and the Gaussian random transform( GRT) are also comparatively analyzed. The analysis results reveal that the M agnitude Cut method can reconstruct the original signal with the phase information of different transforms; and it needs less phase information to recover the signal from the phase of the FTGM or GRT than that of FTBM or CWT under the same reconstruction error.