基于石墨烯电导率的可调性,设计了T型石墨烯纳米超材料结构,实现对电磁诱导透明(EIT)效应的动态调谐。研究发现,当2个石墨烯条互相靠近时,由于二者间存在较强耦合,发生相消干涉,因此出现透明窗口。同时讨论了石墨烯条长度、缝宽、入射...基于石墨烯电导率的可调性,设计了T型石墨烯纳米超材料结构,实现对电磁诱导透明(EIT)效应的动态调谐。研究发现,当2个石墨烯条互相靠近时,由于二者间存在较强耦合,发生相消干涉,因此出现透明窗口。同时讨论了石墨烯条长度、缝宽、入射偏振角等几何参数对EIT效应的影响。研究结果表明,耦合强度随着缝宽的增加而减弱;随着入射偏振角的增加也呈现减弱趋势;随着石墨烯条长度的增加,透明窗口发生红移现象,且第一个下降峰强度明显增加。此外,当费米能级由0.3 e V增加到0.9 e V时,共振频率由24 THz蓝移至35 THz,且强度增强,证实了改变石墨烯的费米能级,能够调节透明窗口的位置。并且透明窗口附近有明显的群速度延迟(0.05 ps左右),即可以实现对光速的减慢。展开更多
文摘基于石墨烯电导率的可调性,设计了T型石墨烯纳米超材料结构,实现对电磁诱导透明(EIT)效应的动态调谐。研究发现,当2个石墨烯条互相靠近时,由于二者间存在较强耦合,发生相消干涉,因此出现透明窗口。同时讨论了石墨烯条长度、缝宽、入射偏振角等几何参数对EIT效应的影响。研究结果表明,耦合强度随着缝宽的增加而减弱;随着入射偏振角的增加也呈现减弱趋势;随着石墨烯条长度的增加,透明窗口发生红移现象,且第一个下降峰强度明显增加。此外,当费米能级由0.3 e V增加到0.9 e V时,共振频率由24 THz蓝移至35 THz,且强度增强,证实了改变石墨烯的费米能级,能够调节透明窗口的位置。并且透明窗口附近有明显的群速度延迟(0.05 ps左右),即可以实现对光速的减慢。