在保证精度的条件下,为了提高航空发动机的计算效率与模拟的准确性,对经典混合界面子结构模态综合法(HISCMSM)进行改进,采用改进的HISCMSM建立了带气膜孔的失谐整体叶盘的有限元模型(FEM)并对其进行了模态分析,与高保真有限元模型方法(F...在保证精度的条件下,为了提高航空发动机的计算效率与模拟的准确性,对经典混合界面子结构模态综合法(HISCMSM)进行改进,采用改进的HISCMSM建立了带气膜孔的失谐整体叶盘的有限元模型(FEM)并对其进行了模态分析,与高保真有限元模型方法(Finite element model method,FEMM)相比,相对误差≤0.79%,比整体高保真FEMM和经典的HICMSM计算效率分别提高31.01%~55.78%,0.89%~5.45%,研究中考虑了气膜孔的影响,发现气膜孔使得叶盘的模态频率降低,其中气膜孔的大小使得模态频率先减小后增大再减小,气膜孔的排列及角度的改变对叶盘模态频率的影响不大,而气膜孔数对其影响较大。为叶盘结构的设计提供了一定指导意义,为下一步的动力响应研究奠定了基础。展开更多
文摘在保证精度的条件下,为了提高航空发动机的计算效率与模拟的准确性,对经典混合界面子结构模态综合法(HISCMSM)进行改进,采用改进的HISCMSM建立了带气膜孔的失谐整体叶盘的有限元模型(FEM)并对其进行了模态分析,与高保真有限元模型方法(Finite element model method,FEMM)相比,相对误差≤0.79%,比整体高保真FEMM和经典的HICMSM计算效率分别提高31.01%~55.78%,0.89%~5.45%,研究中考虑了气膜孔的影响,发现气膜孔使得叶盘的模态频率降低,其中气膜孔的大小使得模态频率先减小后增大再减小,气膜孔的排列及角度的改变对叶盘模态频率的影响不大,而气膜孔数对其影响较大。为叶盘结构的设计提供了一定指导意义,为下一步的动力响应研究奠定了基础。