Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of ...Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts.展开更多
Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day.Hexagonal CdS,as an ...Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day.Hexagonal CdS,as an established semiconductor photocatalyst,has been widely investigated for splitting water into H_(2),while its piezocatalytic performance has attracted less attention,and the relationship between the structure and piezocatalytic activity remains unclear.Herein,two types of CdS nanostructures,namely CdS nanorods and CdS nanospheres,were prepared to probe the above‐mentioned issues.Under ultrasonic vibration,the CdS nanorods afforded a superior piezocatalytic H_(2) evolution rate of 157μmol g^(−1)h^(−1)in the absence of any co‐catalyst,which is nearly 2.8 times that of the CdS nanospheres.The higher piezocatalytic activity of the CdS nanorods is derived from their larger piezoelectric coefficient and stronger mechanical energy harvesting capability,affording a greater piezoelectric potential and more efficient separation and transfer of intrinsic charge carriers,as elucidated through piezoelectric response force microscopy,finite element method,and piezoelectrochemical tests.This study provides a new concept for the design of efficient piezocatalytic materials for converting mechanical energy into sustainable energy via microstructure regulation.展开更多
文摘Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts.
文摘Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day.Hexagonal CdS,as an established semiconductor photocatalyst,has been widely investigated for splitting water into H_(2),while its piezocatalytic performance has attracted less attention,and the relationship between the structure and piezocatalytic activity remains unclear.Herein,two types of CdS nanostructures,namely CdS nanorods and CdS nanospheres,were prepared to probe the above‐mentioned issues.Under ultrasonic vibration,the CdS nanorods afforded a superior piezocatalytic H_(2) evolution rate of 157μmol g^(−1)h^(−1)in the absence of any co‐catalyst,which is nearly 2.8 times that of the CdS nanospheres.The higher piezocatalytic activity of the CdS nanorods is derived from their larger piezoelectric coefficient and stronger mechanical energy harvesting capability,affording a greater piezoelectric potential and more efficient separation and transfer of intrinsic charge carriers,as elucidated through piezoelectric response force microscopy,finite element method,and piezoelectrochemical tests.This study provides a new concept for the design of efficient piezocatalytic materials for converting mechanical energy into sustainable energy via microstructure regulation.