在图像处理领域,基于稀疏表示理论的图像超分辨力算法、高低分辨力字典与稀疏编码之间的映射关系是其中的2个关键环节。由于丰富多样的图像类型,单一字典并不能很好地表示图像。而在稀疏编码之间的映射关系上,严格相等的约束关系也限制...在图像处理领域,基于稀疏表示理论的图像超分辨力算法、高低分辨力字典与稀疏编码之间的映射关系是其中的2个关键环节。由于丰富多样的图像类型,单一字典并不能很好地表示图像。而在稀疏编码之间的映射关系上,严格相等的约束关系也限制了图像重建的效果。针对上述两个方面,采用包容性更强的多个字典与约束条件更为宽松的全耦合稀疏关系进行图像的超分辨力重建。在图像非局部自相似性的基础上,进行多次自适应聚类;挑选出最优的聚类,通过全耦合稀疏学习的图像超分辨力算法,得到多个字典;最后,对输入的低分辨力图像进行分类重建,得到高分辨力图片。实验结果表明,在图像Leaves,Barbara,Room上,本文的聚类算法比原全耦合稀疏学习算法在峰值信噪比(PSNR)上分别提升了0.51 d B,0.21 d B,0.15 d B。展开更多
文摘在图像处理领域,基于稀疏表示理论的图像超分辨力算法、高低分辨力字典与稀疏编码之间的映射关系是其中的2个关键环节。由于丰富多样的图像类型,单一字典并不能很好地表示图像。而在稀疏编码之间的映射关系上,严格相等的约束关系也限制了图像重建的效果。针对上述两个方面,采用包容性更强的多个字典与约束条件更为宽松的全耦合稀疏关系进行图像的超分辨力重建。在图像非局部自相似性的基础上,进行多次自适应聚类;挑选出最优的聚类,通过全耦合稀疏学习的图像超分辨力算法,得到多个字典;最后,对输入的低分辨力图像进行分类重建,得到高分辨力图片。实验结果表明,在图像Leaves,Barbara,Room上,本文的聚类算法比原全耦合稀疏学习算法在峰值信噪比(PSNR)上分别提升了0.51 d B,0.21 d B,0.15 d B。