负荷建模对电力系统仿真和分析非常重要,其中负荷模型参数辨识是负荷建模的关键环节,因而大量的研究工作集中在负荷模型参数辨识方面,但针对辨识所得负荷模型参数的分析研究却很少。为了进一步挖掘辨识所得大量负荷模型参数潜在的规律性...负荷建模对电力系统仿真和分析非常重要,其中负荷模型参数辨识是负荷建模的关键环节,因而大量的研究工作集中在负荷模型参数辨识方面,但针对辨识所得负荷模型参数的分析研究却很少。为了进一步挖掘辨识所得大量负荷模型参数潜在的规律性,提出采用支持向量聚类(support vector clustering,SVC)和决策树分类(decision tree classification,DTC)的方法。首先,通过Matlab电力系统仿真分析工具箱PSAT(power system analysis toolbox,PSAT)得到仿真数据,然后利用仿真所得动态数据辨识得到相应的负荷模型参数。在得到不同场景下的负荷模型参数后,采用支持向量聚类算法为每一个样本添加类别标签。随后,通过决策树来展现负荷特性类别标签与不同条件属性之间的相关性规则。最后,WSCC 3-机、9-节点系统的仿真结果表明了所提算法对负荷模型参数校验和预测的有效性。展开更多
文摘负荷建模对电力系统仿真和分析非常重要,其中负荷模型参数辨识是负荷建模的关键环节,因而大量的研究工作集中在负荷模型参数辨识方面,但针对辨识所得负荷模型参数的分析研究却很少。为了进一步挖掘辨识所得大量负荷模型参数潜在的规律性,提出采用支持向量聚类(support vector clustering,SVC)和决策树分类(decision tree classification,DTC)的方法。首先,通过Matlab电力系统仿真分析工具箱PSAT(power system analysis toolbox,PSAT)得到仿真数据,然后利用仿真所得动态数据辨识得到相应的负荷模型参数。在得到不同场景下的负荷模型参数后,采用支持向量聚类算法为每一个样本添加类别标签。随后,通过决策树来展现负荷特性类别标签与不同条件属性之间的相关性规则。最后,WSCC 3-机、9-节点系统的仿真结果表明了所提算法对负荷模型参数校验和预测的有效性。