期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
复杂场景下自适应特征融合的多尺度船舶检测 被引量:1
1
作者 罗芳 刘阳 何道森 《计算机应用》 CSCD 北大核心 2023年第11期3587-3593,共7页
受台风、大雾、雨雪等复杂天气以及遮挡、尺度变化等影响,现有船舶检测方法存在误检和漏检问题。针对上述复杂场景问题,在YOLOX-S模型的基础上,提出一种自适应特征融合的多尺度船舶检测方法。首先,在主干特征提取网络中引入特征增强模块... 受台风、大雾、雨雪等复杂天气以及遮挡、尺度变化等影响,现有船舶检测方法存在误检和漏检问题。针对上述复杂场景问题,在YOLOX-S模型的基础上,提出一种自适应特征融合的多尺度船舶检测方法。首先,在主干特征提取网络中引入特征增强模块,抑制复杂背景噪声对船舶特征提取的干扰;其次,考虑深浅层次特征融合比例问题,设计自适应特征融合模块,充分利用深浅层次特征,提高模型的多尺度船舶检测能力;最后,在检测头网络,将检测头解耦,并引入自适应的多任务损失函数,平衡分类任务和回归任务,提高船舶检测的鲁棒性。实验结果显示,所提方法在公开船舶检测数据集SeaShips和McShips上的检测平均精度均值(mAP)分别达到了97.43%和96.10%,检测速度达到每秒189帧,满足实时检测的要求,验证了所提方法在复杂场景下仍能对多尺度船舶目标实现高精度检测。 展开更多
关键词 多尺度船舶检测 YOLOX 自适应特征融合 特征增强 多任务损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部