期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高分辨率遥感影像深度迁移可变形卷积的场景分类法
被引量:
11
1
作者
施慧慧
徐雁南
+1 位作者
滕文秀
王妮
《测绘学报》
EI
CSCD
北大核心
2021年第5期652-663,共12页
近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点。由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法。该方法先利用大...
近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点。由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法。该方法先利用大型自然场景数据集ImageNet上训练的深度模型提取遥感影像的深度特征,然后引入可变形卷积层,进一步学习对遥感场景的几何形变具有稳健性的深度特征。结果表明:增加可变形卷积后,DTDCNN在AID、UC-Merced和NWPU-RESISC45数据集上的精度分别提高了4.25%、1.9%和4.83%。该方法通过对场景中不同目标进行感受野自适应调整,增强了空间采样位置能力,有效提高了遥感场景分类的精度。
展开更多
关键词
遥感
场景分类
卷积神经网络
可变形卷积
迁移学习
下载PDF
职称材料
题名
高分辨率遥感影像深度迁移可变形卷积的场景分类法
被引量:
11
1
作者
施慧慧
徐雁南
滕文秀
王妮
机构
南京林业
大学
南方现代林业协同创新中心
南京林业
大学
林学院
马萨诸塞大学阿默斯特分校地球科学系
安徽省地理信息智能感知与服务工程实验室
滁州学院地理信息与旅游学院
出处
《测绘学报》
EI
CSCD
北大核心
2021年第5期652-663,共12页
基金
国家重点研发计划(2019YFD1100404)。
文摘
近年来基于深度卷积神经网络的高分辨率遥感影像场景分类成为广泛关注的焦点。由于现有深度卷积神经网络对遥感场景影像的几何形变不具有稳健性,本文提出了一种基于深度迁移可变形卷积神经网络(DTDCNN)的场景分类方法。该方法先利用大型自然场景数据集ImageNet上训练的深度模型提取遥感影像的深度特征,然后引入可变形卷积层,进一步学习对遥感场景的几何形变具有稳健性的深度特征。结果表明:增加可变形卷积后,DTDCNN在AID、UC-Merced和NWPU-RESISC45数据集上的精度分别提高了4.25%、1.9%和4.83%。该方法通过对场景中不同目标进行感受野自适应调整,增强了空间采样位置能力,有效提高了遥感场景分类的精度。
关键词
遥感
场景分类
卷积神经网络
可变形卷积
迁移学习
Keywords
remote sensing
scene classification
convolutional neural networks
deformable convolutional
transfer learning
分类号
P237 [天文地球—摄影测量与遥感]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
高分辨率遥感影像深度迁移可变形卷积的场景分类法
施慧慧
徐雁南
滕文秀
王妮
《测绘学报》
EI
CSCD
北大核心
2021
11
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部