期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自然场景下的挖掘机实时监测方法 被引量:3
1
作者 毛亮 薛月菊 +3 位作者 朱婷婷 魏颖慧 何俊乐 朱勋沐 《农业工程学报》 EI CAS CSCD 北大核心 2020年第9期214-220,共7页
为实时监测违法用地现象,对作业挖掘机等施工机械进行实时监测至关重要。针对自然场景下由于背景复杂、光照不均匀及遮挡等导致作业挖掘机难以准确检测出的问题,该文采用类似SSD(Single Shot Detector)方法的网络结构,提出一种自然场景... 为实时监测违法用地现象,对作业挖掘机等施工机械进行实时监测至关重要。针对自然场景下由于背景复杂、光照不均匀及遮挡等导致作业挖掘机难以准确检测出的问题,该文采用类似SSD(Single Shot Detector)方法的网络结构,提出一种自然场景下的挖掘机实时监测方法。该方法采用堆叠DDB(Depthwise Dense Block)模块组成基础网络,实现浅层特征提取,并与高层特征融合,提高网络模型的特征表达能力;在MobileNetV2网络的基础上进行改进,设计BDM(Bottleneck Down-Sampling Module)模块构成多尺度特征提取网络,使模型参数数量和计算量减少为SSD的68.4%。构建不同视角和场景下的挖掘机目标数据集,共计18537张,其中15009张作为训练集,3528张作为测试集,并在主流Jetson TX1嵌入式硬件平台进行网络模型移植和验证。试验表明,该文方法的m AP(Mean Average Precision)为90.6%,其检测精度优于SSD和Mobile Net V2SSD的90.2%;模型大小为4.2 MB,分别减小为SSD和Mobile Net V2SSD的1/25和1/4,每帧检测耗时145.2 ms,相比SSD和MobileNetV2SSD分别提高了122.7%和28.2%,可以较好地部署在嵌入式硬件平台上,为现场及时发现违法用地作业提供有效手段。 展开更多
关键词 农业机械 监测 模型 SSD MobileNetV2 自然场景 挖掘机 嵌入式硬件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部