期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用VMD-SSA-LSTM的电离层总电子含量预报研究
1
作者 王建敏 刘志鹏 +3 位作者 黄佳鹏 徐迟 孟祥妹 赵振东 《导航定位学报》 CSCD 北大核心 2024年第3期88-101,共14页
针对太阳活动影响下机器学习模型对电离层总电子含量(TEC)短期预报精度不高的问题,本文提出了一种基于变分模态分解(VMD)、麻雀搜索算法(SSA)、长短期记忆神经网络(LSTM)的组合模型(VMD-SSA-LSTM),以期提高TEC短期预报精度。利用VMD算... 针对太阳活动影响下机器学习模型对电离层总电子含量(TEC)短期预报精度不高的问题,本文提出了一种基于变分模态分解(VMD)、麻雀搜索算法(SSA)、长短期记忆神经网络(LSTM)的组合模型(VMD-SSA-LSTM),以期提高TEC短期预报精度。利用VMD算法对不同时期太阳活动程度影响下的东、西半球TEC格网点数据分解,利用SSA优化LSTM模型,将分解的TEC样本分量及模型最优初始权值和阈值输入到LSTM模型中,将分量预测序列合并重构,得到电离层TEC预测值。实验表明:VMD-SSA-LSTM组合模型在东、西半球太阳活动强烈、适中、较弱时期的均方根误差分别为0.77、0.56、0.69;0.92、0.76、0.73个TECu,平均绝对误差平均值分别为0.69、0.47、0.56;0.79、0.65、0.58个TECu,平均相对精度分别达到94%、94%、93%;93%、91%、91%以上,残差绝对值分布在0~1个TECu的比例均值分别为75.56%、96.11%、85%;74.44%、80.55%、78.33%,较VMD-LSTM、LSTM两种模型预报精度有显著提升。 展开更多
关键词 太阳活动 电离层总电子含量 变分模态分解 麻雀优化算法 长短期记忆神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部