Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge...Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers.To this end,we report that the mesoporous TiO_(2)nanoparticles are anchored on highly conductive Ti_(3)C_(2)MXene co-catalyst by electrostatic self-assembly strategy.The constructed mesoporous TiO_(2)/Ti_(3)C_(2)composites display that the mesoporous TiO_(2)nanoparticles are uniformly distributed on the surface of layer structured Ti_(3)C_(2)nanosheets.More importantly,the as-obtained mesoporous TiO_(2)/Ti_(3)C_(2)composites reveal the significantly enhanced light absorption performance,photo-induced carriers separation and transfer ability,thus boosting the photocatalytic activity.The photocatalytic methyl orange degradation efficiency of mesoporous TiO_(2)/Ti_(3)C_(2)composite with an optimized Ti_(3)C_(2)content(3 wt%)can reach 99.6%within 40 min.The capture experiments of active species confirm that the·O_(2)-and·OH play major role in photocatalytic degradation process.Furthermore,the optimized mesoporous TiO_(2)/Ti_(3)C_(2)composite also shows an excellent photocatalytic H2 production rate of 218.85μmol g^(-1)h^(-1),resulting in a 5.6 times activity as compared with the pristine mesoporous TiO_(2)nanoparticles.This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.展开更多
In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the p...In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.展开更多
Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were mea...Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.展开更多
The effects of punch velocity on the microstructures and tensile properties of Mg2 Sip/AM60 B composite were investigated.In comparison,the tensile properties of the permanent mold casting of this composite were also ...The effects of punch velocity on the microstructures and tensile properties of Mg2 Sip/AM60 B composite were investigated.In comparison,the tensile properties of the permanent mold casting of this composite were also analyzed.The results indicate that the punch velocity obviously influences the microstructure through changing the secondary solidification behaviors and semisolid deformation mechanisms.The variations of the microstructures and deformation mechanisms are responsible for the changes in tensile properties and fracture modes of the composites.The best comprehensive tensile properties of this composite are obtained under the punch velocity of 60 mm/s.The resulting ultimate tensile strength and elongation of the composite are found to be 198 MPa and 10.2%,respectively.The excellent tensile properties of the thixoforged composite are ascribed to the elimination of porosities and the work hardening.展开更多
Recently,traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019(COVID-19),and Rhizoma polygonati(Huangjing)has been one of the recommended components.Its processed products pla...Recently,traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019(COVID-19),and Rhizoma polygonati(Huangjing)has been one of the recommended components.Its processed products play antidiabetic,antiviral,antitumor,antioxidation,antifatigue,antiaging,and immune enhancement roles.The climate in Mount Tai is mild,and the dense forest is suitable for the growth of Rhizome polygonati,which has gradually evolved into a unique specie.Considering the important medicinal value and pleasant taste of Mount Tai-Rhizoma polygonati,various healthy and functional food products,controlled by quality markers with anti-COVID-19 potential,as well as emergency foods can be developed.The study aimed to review current evidence on the nutritional value of Rhizoma polygonati from Mount Tai and its usefulness as a traditional Chinese medicine,source of herbzyme,and potential remediating agent for COVID-19 and food shortage.Most recent findings regarding herbal nanomedicine have revealed that nanoscale chemical compounds are potentially efficient in drug delivery or nanozyme catalysis upon bioprocessing.Nanoflower structure is found in processed Rhizoma polygonati by self-assembly and has wide application in enzymatic events,particularly nanoscale herbzyme.The novel findings regarding Mount Tai-Rhizoma polygonati could enhance its novel applications in chronic and hidden hunger,clinical nanomedicine,and as an anti-COVID-19 agent.展开更多
Elastic reverse-time migration can effectively deal with multicomponent seismic data in which the imaging condition based on energy norm can extract the scalar-imaging result from multicomponent data.However,the energ...Elastic reverse-time migration can effectively deal with multicomponent seismic data in which the imaging condition based on energy norm can extract the scalar-imaging result from multicomponent data.However,the energy cross-correlation imaging condition characterized by particle velocity and stress suffers from the problem of overdependence on the background elastic parameters.Therefore,we characterize the elastic-wave energy using the energy-flow vector,which is equal to the energy density,without background elastic parameters.According to the source and receiver wave fields,we propose an imaging energyflow vector and an elastic-wave energy imaging condition.Under the assumption of a planewave solution,the backscattering suppression is verified.The numerical simulations show that the elastic-energy imaging condition can obtain the energy image without backscattering.Compared with the cross-correlation imaging conditions in a vector-based wave field,the proposed imaging condition can eliminate the dependence on the background elastic parameters and effectively process seabed multicomponent data,which are conducive to further providing an interpretation of marine geological structures.展开更多
The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of S...The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of Si−Si interactions in the chemical environments around Si was demonstrated,which determined that the mixing enthalpy reached the minimum on Mg-rich side.In terms of Honeycutt and Anderson(HA)bond pairs based on the partial pair correlation functions,the attraction between Si−Si pairs and Mg atoms was revealed,and the evolution of structural order with Si content was characterized as a process of constituting frame structures by Si−Si pairs that dispersed Mg atoms.Focusing on tetrahedral order of local Si-configurations,a correlation between the mixing enthalpy and structural order was uncovered ultimately,which provided a new perspective combining the energetics with geometry to understand the liquid Mg−Si binary system.展开更多
Utilizing density functional theory(DFT)and non-equilibrium Green's function,we systematically studied the electrical transport and rectification properties of thiol-and amino-terminated molecules embedded in grap...Utilizing density functional theory(DFT)and non-equilibrium Green's function,we systematically studied the electrical transport and rectification properties of thiol-and amino-terminated molecules embedded in graphene nanoribbons.We firstly found the thiol-terminated moleculesshowbetterelectron transport properties compared to the amino-terminated,which can be attributed to the strong electronwithdrawing ability and favorable coupling effects.Secondly,the symmetrical molecules show almost symmetrical current-voltage(-V)curves and exhibit negligible rectification effects.On the other hand,the asymmetrical molecules exhibit asymmetrical I-V curves and better rectification performance.The rectification effect is closely related to molecular asymmetry degrees.For example,the rectification ratio of asymmetric N6((E)-N1-(3-aminopropyl)-but-2-ene-1,4-diamine)molecule is much smaller than the N4(5-phenylthiazole-2,4-diamine)and N5(2,6-diaminohexane-1,1,5-triol)molecules.Furthermore,we found the rectification ratio of the asymmetrical amino-terminated molecules can reach 400,while the biggest rectification ratio of the thiol-terminated molecule can only reach 45.These findings offer crucial insights for future graphene molecular electronic device design.展开更多
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
文摘Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis.However,the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers.To this end,we report that the mesoporous TiO_(2)nanoparticles are anchored on highly conductive Ti_(3)C_(2)MXene co-catalyst by electrostatic self-assembly strategy.The constructed mesoporous TiO_(2)/Ti_(3)C_(2)composites display that the mesoporous TiO_(2)nanoparticles are uniformly distributed on the surface of layer structured Ti_(3)C_(2)nanosheets.More importantly,the as-obtained mesoporous TiO_(2)/Ti_(3)C_(2)composites reveal the significantly enhanced light absorption performance,photo-induced carriers separation and transfer ability,thus boosting the photocatalytic activity.The photocatalytic methyl orange degradation efficiency of mesoporous TiO_(2)/Ti_(3)C_(2)composite with an optimized Ti_(3)C_(2)content(3 wt%)can reach 99.6%within 40 min.The capture experiments of active species confirm that the·O_(2)-and·OH play major role in photocatalytic degradation process.Furthermore,the optimized mesoporous TiO_(2)/Ti_(3)C_(2)composite also shows an excellent photocatalytic H2 production rate of 218.85μmol g^(-1)h^(-1),resulting in a 5.6 times activity as compared with the pristine mesoporous TiO_(2)nanoparticles.This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301105)the National Natural Science Foundation of China(No.51804190)+4 种基金the Shandong Provincial Natural Science Foundation,China(No.ZR2021ME240)the Youth Science Funds of Shandong Academy of Sciences,China(No.2020QN0022)the Shandong Province Key Research and Development Plan,China(Nos.2019GHZ019 and 2019JZZY020329)the Jinan Science&Technology Bureau,China(No.2019GXRC030)the Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)。
文摘In order to impart electrical conductivity to the magnesium alloy micro-arc oxidation(MAO)coating,the electroless copper plating was performed.Effects of plating temperature and complexing agent concentration on the properties of the electroless copper plating layers were studied by measuring their microstructure,corrosion resistance and electrical conductivity.It was found that the optimized plating temperature was 60°C,and the most suitable value of the complexing agent concentration was 30 g/L.Under this condition,a complete and dense plating layer could be obtained.The formation mechanism of the plating layer on magnesium alloy MAO coating was analyzed.A three-stage model of the plating process was proposed.The square resistance of the plated specimen was finally reduced to 0.03Ω/□after the third stage.Through electroless copper plating,the MAO coated sample obtained excellent electrical conductivity without significantly reducing its corrosion resistance.
基金Project(ZR2011EMM014)supported by Shandong Provincial Natural Science Foundation of China
文摘Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.
基金Project(51804190)supported by the National Natural Science Foundation of ChinaProject(ZR2017LEM001)supported by Shandong Provincial Natural Science Foundation,China+1 种基金Project(2017CXGC0404)supported by Shandong Province Key Research and Development Plan,ChinaProject(2019QN0022)supported by the Youth Science Funds of Shandong Academy of Sciences,China.
文摘The effects of punch velocity on the microstructures and tensile properties of Mg2 Sip/AM60 B composite were investigated.In comparison,the tensile properties of the permanent mold casting of this composite were also analyzed.The results indicate that the punch velocity obviously influences the microstructure through changing the secondary solidification behaviors and semisolid deformation mechanisms.The variations of the microstructures and deformation mechanisms are responsible for the changes in tensile properties and fracture modes of the composites.The best comprehensive tensile properties of this composite are obtained under the punch velocity of 60 mm/s.The resulting ultimate tensile strength and elongation of the composite are found to be 198 MPa and 10.2%,respectively.The excellent tensile properties of the thixoforged composite are ascribed to the elimination of porosities and the work hardening.
基金financially supported by Shandong Taishanghuangjing Biotechnology Co.Ltd.received Faculty-Development Competitive Research Grants Program of Nazarbayev University(ID:16797152,ie,15798117(110119FD4531)to Yingqiu Xie,and ID:16796808,ie,15874919(110119FD4542)to Haiyan Fan and Yingqiu Xie)2019 Asian Universities Alliance(AUA)fellowship of United Arab Emirates University(UAEU)to Yingqiu Xie and Amr Amin.
文摘Recently,traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019(COVID-19),and Rhizoma polygonati(Huangjing)has been one of the recommended components.Its processed products play antidiabetic,antiviral,antitumor,antioxidation,antifatigue,antiaging,and immune enhancement roles.The climate in Mount Tai is mild,and the dense forest is suitable for the growth of Rhizome polygonati,which has gradually evolved into a unique specie.Considering the important medicinal value and pleasant taste of Mount Tai-Rhizoma polygonati,various healthy and functional food products,controlled by quality markers with anti-COVID-19 potential,as well as emergency foods can be developed.The study aimed to review current evidence on the nutritional value of Rhizoma polygonati from Mount Tai and its usefulness as a traditional Chinese medicine,source of herbzyme,and potential remediating agent for COVID-19 and food shortage.Most recent findings regarding herbal nanomedicine have revealed that nanoscale chemical compounds are potentially efficient in drug delivery or nanozyme catalysis upon bioprocessing.Nanoflower structure is found in processed Rhizoma polygonati by self-assembly and has wide application in enzymatic events,particularly nanoscale herbzyme.The novel findings regarding Mount Tai-Rhizoma polygonati could enhance its novel applications in chronic and hidden hunger,clinical nanomedicine,and as an anti-COVID-19 agent.
基金supported by the National Nature Science Foundation of China(No.61801275)Shangdong Provincial Natural Science Foundation(No.ZR2018BF002)+2 种基金China Postdoctoral Science Foundation(No.2017M622242)Basic Research Projects of Science,Education and Industry Integration Pilot Project of Qilu University of Technology(2022PX082)Qingdao Applied Research Projects.
文摘Elastic reverse-time migration can effectively deal with multicomponent seismic data in which the imaging condition based on energy norm can extract the scalar-imaging result from multicomponent data.However,the energy cross-correlation imaging condition characterized by particle velocity and stress suffers from the problem of overdependence on the background elastic parameters.Therefore,we characterize the elastic-wave energy using the energy-flow vector,which is equal to the energy density,without background elastic parameters.According to the source and receiver wave fields,we propose an imaging energyflow vector and an elastic-wave energy imaging condition.Under the assumption of a planewave solution,the backscattering suppression is verified.The numerical simulations show that the elastic-energy imaging condition can obtain the energy image without backscattering.Compared with the cross-correlation imaging conditions in a vector-based wave field,the proposed imaging condition can eliminate the dependence on the background elastic parameters and effectively process seabed multicomponent data,which are conducive to further providing an interpretation of marine geological structures.
基金The authors are grateful for the financial supports from the National Key Research and Development Program of China(2016YFB0701202)the National Natural Science Foundation of China(51901117,51801116,51804190,and 11804179)the Shandong Provincial Key Research and Development Plan,China(2019GGX102047).
文摘The mixing enthalpies and structural order in liquid Mg−Si system were investigated via ab-initio molecular dynamics at 1773 K.By calculating the transferred charges and electron density differences,the dominance of Si−Si interactions in the chemical environments around Si was demonstrated,which determined that the mixing enthalpy reached the minimum on Mg-rich side.In terms of Honeycutt and Anderson(HA)bond pairs based on the partial pair correlation functions,the attraction between Si−Si pairs and Mg atoms was revealed,and the evolution of structural order with Si content was characterized as a process of constituting frame structures by Si−Si pairs that dispersed Mg atoms.Focusing on tetrahedral order of local Si-configurations,a correlation between the mixing enthalpy and structural order was uncovered ultimately,which provided a new perspective combining the energetics with geometry to understand the liquid Mg−Si binary system.
基金This work was supported by the National Natural Science Foundation of China(No.22073053)the Young Taishan Scholar Program of Shandong Province(No.tsqn201909139)+3 种基金the Program for Scientific Research Innovation Team in Colleges and Universities of Jinan(No.2021GXRC042)the Program for Introduced Innovation Teams from the New Collegiate 20 Items of Jinan(No.202228031)the Natural Science Foundation of Shandong Province(No.ZR2023MA089)Qilu University of Technology(Shandong Academy of Sciences)Basic Research Project of Science,Education and Industry Integration Pilot(No.2023PY046).
文摘Utilizing density functional theory(DFT)and non-equilibrium Green's function,we systematically studied the electrical transport and rectification properties of thiol-and amino-terminated molecules embedded in graphene nanoribbons.We firstly found the thiol-terminated moleculesshowbetterelectron transport properties compared to the amino-terminated,which can be attributed to the strong electronwithdrawing ability and favorable coupling effects.Secondly,the symmetrical molecules show almost symmetrical current-voltage(-V)curves and exhibit negligible rectification effects.On the other hand,the asymmetrical molecules exhibit asymmetrical I-V curves and better rectification performance.The rectification effect is closely related to molecular asymmetry degrees.For example,the rectification ratio of asymmetric N6((E)-N1-(3-aminopropyl)-but-2-ene-1,4-diamine)molecule is much smaller than the N4(5-phenylthiazole-2,4-diamine)and N5(2,6-diaminohexane-1,1,5-triol)molecules.Furthermore,we found the rectification ratio of the asymmetrical amino-terminated molecules can reach 400,while the biggest rectification ratio of the thiol-terminated molecule can only reach 45.These findings offer crucial insights for future graphene molecular electronic device design.