Objective:The causal relationship between eczema and autoimmune diseases has not been previously reported.This study aims to evaluate the causal relationship between eczema and autoimmune diseases.Methods:The two‐sam...Objective:The causal relationship between eczema and autoimmune diseases has not been previously reported.This study aims to evaluate the causal relationship between eczema and autoimmune diseases.Methods:The two‐sample Mendelian randomization(MR)method was used to assess the causal effect of eczema on autoimmune diseases.Summary data from the Genome-Wide Association Study Catalog(GWAS)were obtained from the Integrative Epidemiology Unit(IEU)database.For eczema and autoimmune diseases,genetic instrument variants(GIVs)were identified according to the significant difference(P<5×10−8).Causal effect estimates were generated using the inverse‐variance weighted(IVW)method.MR Egger,maximum likelihood,MR-PRESSO,and MR-RAPS methods were used for alternative analyses.Sensitivity tests,including heterogeneity,horizontal pleiotropy,and leave-one-out analyses,were performed.Finally,reverse causality was assessed.Results:Genetic susceptibility to eczema was associated with an increased risk of Crohn’s disease(OR=1.444,95%CI 1.199 to 1.738,P<0.001)and ulcerative colitis(OR=1.002,95%CI 1.001 to 1.003,P=0.002).However,no causal relationship was found for the other 6 autoimmune diseases,including systemic lupus erythematosus(SLE)(OR=0.932,P=0.401),bullous pemphigoid(BP)(OR=1.191,P=0.642),vitiligo(OR=1.000,P=0.327),multiple sclerosis(MS)(OR=1.000,P=0.965),ankylosing spondylitis(AS)(OR=1.001,P=0.121),rheumatoid arthritis(RA)(OR=1.000,P=0.460).Additionally,no reverse causal relationship was found between autoimmune diseases and eczema.Conclusion:Eczema is associated with an increased risk of Crohn’s disease and ulcerative colitis.No causal relationship is found between eczema and SLE,MS,AS,RA,BP,or vitiligo.展开更多
Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in ...Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.展开更多
The effects of surface-modified porous titanium implants with different porosities and pore sizes on osseointegration were investigated in vivo.Three porous titanium implants(A30,A40 and A50 containing volume fraction...The effects of surface-modified porous titanium implants with different porosities and pore sizes on osseointegration were investigated in vivo.Three porous titanium implants(A30,A40 and A50 containing volume fractions of space-holder NaCl being 30%,40%and 50%,respectively)were manufactured by metal injection moulding(MIM).The surface-modified implants were implanted into muscles and femurs of hybrid male dogs.Interface osteogenic activity and histological bone ingrowth of porous titanium implants were evaluated at 28,56 and 84 d.The results showed that when additive space-holder amount of NaCl increased from 30%to 50%(volume fraction),the general porosity and mass fraction of macropores of porous titanium rose from 42.4%to 62.0%and from 8.3%to 69.3%,respectively.Histologic sections and fluorescent labeling showed that the A50 implant demonstrated a significantly higher osteogenic capacity at 28 d than other implants.Bone ingrowth into the A30 implant was lower than that into other implants at 84 d.Therefore,the pore structure of A50 implant was suitable for new bone tissue to grow into porous implant.展开更多
This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorableosteointegration performance and anti-bacterial functions.The implant was prepared using freeze casting,a...This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorableosteointegration performance and anti-bacterial functions.The implant was prepared using freeze casting,and nanospikesurface-modification of the implant was performed using thermal oxidation.The pore morphology and size,mechanical properties,and osteogenic performance of the implants were analyzed and discussed.The results showed that when the volume ratio of titaniumpowder in slurry was set to be10%,the porosity,pore diameter,compressive strength,and elastic modulus of the porous sampleswere(58.32±1.08)%,(126.17±18.64)μm,(58.51±20.38)MPa and(1.70±0.52)GPa,respectively.When the porous sample wassintered at a temperature of1200°C for1h,these values were(58.24±1.50)%,(124.16±13.64)μm,(54.77±27.55)MPa and(1.63±0.30)GPa,respectively.The nanospike surface-modified bionic porous titanium implants had favorable pore morphology andsize,mechanical properties and osteointegration performance through technology optimization,and showed significant clinicalapplication prospect.展开更多
Objective To investigate and predict the molecular targets and mechanism of Huanglian Jiedu Decoction(黄连解毒汤,HLJDD)in the treatment of Corona Virus Disease 2019(COV-ID-19)through network pharmacology and molecular...Objective To investigate and predict the molecular targets and mechanism of Huanglian Jiedu Decoction(黄连解毒汤,HLJDD)in the treatment of Corona Virus Disease 2019(COV-ID-19)through network pharmacology and molecular docking analysis.Methods The chemical constituents and action targets of HLJDD were retrieved on Tradi-tional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),SymMap v2,Encyclopedia of Traditional Chinese Medicine(ETCM),a High-throughput Ex-periment-and Reference-guided Database of Traditional Chinese Medicine(HERB),and Tra-ditional Chinese Medicine Integrated Database(TCMID).UniProt and GeneCards were used to query the target genes that corresponding to the active compounds,and then a compound-target network was constructed using Cytoscape 3.7.2.Gene Ontology(GO)database was used to annotate GO functions.Kyoto Encyclopedia of Genes and Genomes(KEGG)was used to predict the possible mechanisms of active compounds.The Database for Annotation,Visu-alization and Integrated Discovery(DAVID)was used to analysis the tissue enrichment.The main active compounds in HLJDD are molecularly docked with their corresponding related targets.Results Seventy-six compounds were screened and 458 corresponding targets in the network were obtained.Gene annotation showed that the targets were involved mainly in 1953 biolo-gical processes.884 signaling pathways was enriched,involving signaling by interleukins,cy-tokine signaling in immune system,generic transcription pathway,and RNA polymerase II transcription.The targets mainly distributed in the lung,liver,and placenta,involving a vari-ety of immune cells,such as T cells and B cells.The molecular docking results showed that core compounds such as wogonin,berberine,and baicalein had high affinity with tumor nec-rosis factor(TNF),insulin(INS),and tumor protein 53(TP53).Conclusion The active compounds in HLJDD may have a therapeutic effect on COVID-19 through regulating multiple signal pathways by targeting genes such as vascular endothelial growth factor A(VEGFA),INS,interleukin-6(IL-6),TNF,caspase-3,TP53,and mitogen-activ-ated protein kinase 3(MAPK3).展开更多
A novel antibacterial biomimetic porous titanium implant with good osseointegration was prepared by freeze-casting and thermal oxidation.Bone integration properties of the porous titanium implant were evaluated by cel...A novel antibacterial biomimetic porous titanium implant with good osseointegration was prepared by freeze-casting and thermal oxidation.Bone integration properties of the porous titanium implant were evaluated by cell proliferation assay,alkaline phosphatase activity assay,X-ray examination and hard bone tissue biopsy.The in vitro cell proliferation and the level of differentiation of the group with a modified nano-porous implant surface were significantly higher than those in the group without surface modification and the dense titanium control group(P<0.05).In vivo,bone growth and osteogenesis were found in the experimental groups with modified and unmodified porous titanium implants;osteoblasts in the modified group had more mature differentiation in the pores compared to the unmodified group.Such implants can form solid,biologically compatible bone grafts with bone tissues,exhibiting good osseointegration.展开更多
Transfection efficiency of hydroxyapatite nanoparticles(HAnps)is relative to the particle size,morphology,surface charge,surface modifier and so on.This study prepared HAnps with doped Tb/Mg by hydrothermal synthesis ...Transfection efficiency of hydroxyapatite nanoparticles(HAnps)is relative to the particle size,morphology,surface charge,surface modifier and so on.This study prepared HAnps with doped Tb/Mg by hydrothermal synthesis method(HTSM)and investigated the effects of different Tb/Mg contents on the morphology,particle size,surface charge,composition and cellular endocytosis of HAnps.The results showed that Mg-HAnps possessed better dispersion ability than Tb-HAnps.With increasing doping content of Tb/Mg-HAnps,the granularity of Tb-HAnps increased,while that of Mg-HAnps declined.Both particle size and zeta potential of Mg-HAnps were lower than those of Tb-HAnps.7.5%Mg-doping HAnps presented relatively uniform slender rod morphology with average size of30nm,while10%Mg-doping HAnps were prone to agglomeration.Moreover,Mg-HAnps-GFP(green fluorescent protein)endocytosed by MG63cells was dotted in the perinuclear region,while Tb-HAnps were more likely to aggregate.In conclusion,as gene vectors,Mg-HAnps showed enhanced properties compared to Tb-HAnps.展开更多
Objective Pharmacological methods were used to screen targets and signaling pathways of Ma Xing Shi Gan Decoction(MXSGD)during influenza treatments,and mechanisms underlying antiinfluenza effects were elucidated.Metho...Objective Pharmacological methods were used to screen targets and signaling pathways of Ma Xing Shi Gan Decoction(MXSGD)during influenza treatments,and mechanisms underlying antiinfluenza effects were elucidated.Methods The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and relevant literature were searched under predefined conditions to identify the main compounds and their targets.Interactions between the target proteins were predicted using the STRING database.Gene Ontology(GO)functional enrichment analyses and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were performed on the core targets involved in the influenza protein-protein interaction(PPI)network,using WebGestalt and the reactome database.iGEMDOCK was used for molecular docking of receptors and ligands to produce docking scores,and the results were visualized using Autodock and PyMOL.Results In total,126 major compounds and their respective targets were screened.355 influenza target proteins and 1221 influenza protein interactions were predicted using the STRING database.Influenza-related signaling pathways were strongly enriched in pharmacodynamic targets of MXSGD such as cytokine signaling in immune system and signaling by interleukin.The main biological process was response to the stimulates.Molecular docking results showed that RELALicochalcone A docking elicited by MXSGD,was superior to that of other target proteins and active compounds,suggesting that the docking site is also the main effector site of MXSGD during influenza treatments.Conclusions The results showed that MXSGD exerts antiinfluenza effects by interfering with virus adsorption,inhibiting virus proliferation,influencing immune functions and protecting host cells,which may prevent inflammation-induced tissue damage.展开更多
Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden ...Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden of doctors,simplify the diagnosis and treatment process,and improve the quality of diagnosis.Methods Firstly,data enhancement,image resizings,and TFRecord coding are used to preprocess the input of the model,and then a 34-layer deep residual network(ResNet-34)is constructed to extract the characteristics of psoriasis.Finally,we used the Adam algorithm as the optimizer to train ResNet-34,used cross-entropy as the loss function of ResNet-34 in this study to measure the accuracy of the model,and obtained an optimized ResNet-34 model for psoriasis diagnosis.Results The experimental results based on k-fold cross validation show that the proposed model is superior to other diagnostic methods in terms of recall rate,F1-score and ROC curve.Conclusion The ResNet-34 model can achieve accurate diagnosis of psoriasis,and provide technical support for data analysis and intelligent diagnosis and treatment of psoriasis.展开更多
Critical care medicine focuses on understanding the pathophysiological mechanisms and treatment approaches for life-threatening conditions,including sepsis,severe trauma/burns,hemorrhagic shock,heatstroke,and acute pa...Critical care medicine focuses on understanding the pathophysiological mechanisms and treatment approaches for life-threatening conditions,including sepsis,severe trauma/burns,hemorrhagic shock,heatstroke,and acute pancreatitis,all of which have high incidence rates.These conditions are primarily characterized by acute multi-organ dysfunction,with sudden onset,severe illness,and high mortality rates.Additionally,critical care treatment demands substantial medical resources,imposing significant economic burdens on patients’families and society.In recent years,critical care medicine has achieved notable progress,especially in multidisciplinary integration with immunology-based fields.Collaboration across disciplines has not only accelerated advancements in critical care but also propelled the rapid development of modern immunology.This paper provides an overview and assessment of the cross-disciplinary fusion between critical care medicine and immunology,exploring how these fields related extensions mutually enhance each other.It further analyzes China’s potential to become a global leader in this area within the next 5 to 10 years.展开更多
Objective:Sleep quality in kidney transplant recipients is closely associated with symptoms of fatigue and depression.Although subjective assessment tools like the Pittsburgh Sleep Quality Index and the Richards-Campb...Objective:Sleep quality in kidney transplant recipients is closely associated with symptoms of fatigue and depression.Although subjective assessment tools like the Pittsburgh Sleep Quality Index and the Richards-Campbell Sleep Questionnaire(RCSQ)are widely used to evaluate sleep quality,there is a lack of studies utilizing polysomnography for objective evaluation.This study aims to investigate the correlation between sleep quality,fatigue,and depression in kidney transplant recipients using both subjective and objective methods,providing scientific evidence for improving their quality of life.Methods:The cross-sectional study conveniently sampled 50 kidney transplant recipients from a transplant center in a general hospital between August 2018 and March 2020.Subjective and objective sleep parameters were evaluated using the RCQS and polysomnography,respectively.The Fatigue Severity Scale was used to assess fatigue,and the Hamilton Depression Scale was employed to measure depression levels.Results:A lower proportion of rapid eye movement(REM)sleep was associated with increased fatigue.Additionally,higher wake time percentages and poorer sleep quality were significantly correlated with greater depression severity.Conclusion:This study underscores the critical importance of effectively managing sleep quality in kidney transplant recipients and addressing their fatigue and depression symptoms.These findings lay a foundation for developing targeted nursing and therapeutic strategies.展开更多
基金This work was supported by the National Natural Science Foundation (82273506,82273508)the Hunan Provincial Health Commission Scientific Research Plan Project (D202304128334),China。
文摘Objective:The causal relationship between eczema and autoimmune diseases has not been previously reported.This study aims to evaluate the causal relationship between eczema and autoimmune diseases.Methods:The two‐sample Mendelian randomization(MR)method was used to assess the causal effect of eczema on autoimmune diseases.Summary data from the Genome-Wide Association Study Catalog(GWAS)were obtained from the Integrative Epidemiology Unit(IEU)database.For eczema and autoimmune diseases,genetic instrument variants(GIVs)were identified according to the significant difference(P<5×10−8).Causal effect estimates were generated using the inverse‐variance weighted(IVW)method.MR Egger,maximum likelihood,MR-PRESSO,and MR-RAPS methods were used for alternative analyses.Sensitivity tests,including heterogeneity,horizontal pleiotropy,and leave-one-out analyses,were performed.Finally,reverse causality was assessed.Results:Genetic susceptibility to eczema was associated with an increased risk of Crohn’s disease(OR=1.444,95%CI 1.199 to 1.738,P<0.001)and ulcerative colitis(OR=1.002,95%CI 1.001 to 1.003,P=0.002).However,no causal relationship was found for the other 6 autoimmune diseases,including systemic lupus erythematosus(SLE)(OR=0.932,P=0.401),bullous pemphigoid(BP)(OR=1.191,P=0.642),vitiligo(OR=1.000,P=0.327),multiple sclerosis(MS)(OR=1.000,P=0.965),ankylosing spondylitis(AS)(OR=1.001,P=0.121),rheumatoid arthritis(RA)(OR=1.000,P=0.460).Additionally,no reverse causal relationship was found between autoimmune diseases and eczema.Conclusion:Eczema is associated with an increased risk of Crohn’s disease and ulcerative colitis.No causal relationship is found between eczema and SLE,MS,AS,RA,BP,or vitiligo.
基金This work was supported by the National Natural Science Foundation(82172594 and 82373046)the Hunan Graduate Research Innovation Project(CX20230318),China.
文摘Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.
基金Project(81571021) supported by the National Natural Science Foundation of ChinaProjects(2015WK3012,2018SK2017) supported by the Hunan Provincial Science and Technology Department Project,ChinaProject(20160301) supported by New Talent Project of the Third Xiangya Hospital of Central South University,China
文摘The effects of surface-modified porous titanium implants with different porosities and pore sizes on osseointegration were investigated in vivo.Three porous titanium implants(A30,A40 and A50 containing volume fractions of space-holder NaCl being 30%,40%and 50%,respectively)were manufactured by metal injection moulding(MIM).The surface-modified implants were implanted into muscles and femurs of hybrid male dogs.Interface osteogenic activity and histological bone ingrowth of porous titanium implants were evaluated at 28,56 and 84 d.The results showed that when additive space-holder amount of NaCl increased from 30%to 50%(volume fraction),the general porosity and mass fraction of macropores of porous titanium rose from 42.4%to 62.0%and from 8.3%to 69.3%,respectively.Histologic sections and fluorescent labeling showed that the A50 implant demonstrated a significantly higher osteogenic capacity at 28 d than other implants.Bone ingrowth into the A30 implant was lower than that into other implants at 84 d.Therefore,the pore structure of A50 implant was suitable for new bone tissue to grow into porous implant.
基金Projects(51290295,51305464) supported by the National Natural Science Foundation of ChinaProject(2016JJ6156) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2016JC2064) supported by the Key Research and Development Program of Hunan Province,ChinaProject(20130162120094) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘This work aimed to prepare the nanospike surface-modified bionic porous titanium implants that feature favorableosteointegration performance and anti-bacterial functions.The implant was prepared using freeze casting,and nanospikesurface-modification of the implant was performed using thermal oxidation.The pore morphology and size,mechanical properties,and osteogenic performance of the implants were analyzed and discussed.The results showed that when the volume ratio of titaniumpowder in slurry was set to be10%,the porosity,pore diameter,compressive strength,and elastic modulus of the porous sampleswere(58.32±1.08)%,(126.17±18.64)μm,(58.51±20.38)MPa and(1.70±0.52)GPa,respectively.When the porous sample wassintered at a temperature of1200°C for1h,these values were(58.24±1.50)%,(124.16±13.64)μm,(54.77±27.55)MPa and(1.63±0.30)GPa,respectively.The nanospike surface-modified bionic porous titanium implants had favorable pore morphology andsize,mechanical properties and osteointegration performance through technology optimization,and showed significant clinicalapplication prospect.
基金National Natural Science Foundation of China(81973670)Natural Science Foundation of Hunan Province(2018JJ2297)+2 种基金Key Program of Scientific Research Fund of Hunan Provincial Education Department(19A370)Domestic First-class Cultivation Discipline Integrated Traditional Chinese and Western Medicine Discipline Project of Hunan Province(2021ZXYJH10)College Student Innovation and Entrepreneurship Training Program of Hunan Province(S201910541046).
文摘Objective To investigate and predict the molecular targets and mechanism of Huanglian Jiedu Decoction(黄连解毒汤,HLJDD)in the treatment of Corona Virus Disease 2019(COV-ID-19)through network pharmacology and molecular docking analysis.Methods The chemical constituents and action targets of HLJDD were retrieved on Tradi-tional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),SymMap v2,Encyclopedia of Traditional Chinese Medicine(ETCM),a High-throughput Ex-periment-and Reference-guided Database of Traditional Chinese Medicine(HERB),and Tra-ditional Chinese Medicine Integrated Database(TCMID).UniProt and GeneCards were used to query the target genes that corresponding to the active compounds,and then a compound-target network was constructed using Cytoscape 3.7.2.Gene Ontology(GO)database was used to annotate GO functions.Kyoto Encyclopedia of Genes and Genomes(KEGG)was used to predict the possible mechanisms of active compounds.The Database for Annotation,Visu-alization and Integrated Discovery(DAVID)was used to analysis the tissue enrichment.The main active compounds in HLJDD are molecularly docked with their corresponding related targets.Results Seventy-six compounds were screened and 458 corresponding targets in the network were obtained.Gene annotation showed that the targets were involved mainly in 1953 biolo-gical processes.884 signaling pathways was enriched,involving signaling by interleukins,cy-tokine signaling in immune system,generic transcription pathway,and RNA polymerase II transcription.The targets mainly distributed in the lung,liver,and placenta,involving a vari-ety of immune cells,such as T cells and B cells.The molecular docking results showed that core compounds such as wogonin,berberine,and baicalein had high affinity with tumor nec-rosis factor(TNF),insulin(INS),and tumor protein 53(TP53).Conclusion The active compounds in HLJDD may have a therapeutic effect on COVID-19 through regulating multiple signal pathways by targeting genes such as vascular endothelial growth factor A(VEGFA),INS,interleukin-6(IL-6),TNF,caspase-3,TP53,and mitogen-activ-ated protein kinase 3(MAPK3).
基金Projects (51290295,51305464) supported by the National Natural Science Foundation of ChinaProject (2016JJ6156) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project (2016JC2064) supported by Key Research and Development Project of Hunan Province,ChinaProject (20130162120094) supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘A novel antibacterial biomimetic porous titanium implant with good osseointegration was prepared by freeze-casting and thermal oxidation.Bone integration properties of the porous titanium implant were evaluated by cell proliferation assay,alkaline phosphatase activity assay,X-ray examination and hard bone tissue biopsy.The in vitro cell proliferation and the level of differentiation of the group with a modified nano-porous implant surface were significantly higher than those in the group without surface modification and the dense titanium control group(P<0.05).In vivo,bone growth and osteogenesis were found in the experimental groups with modified and unmodified porous titanium implants;osteoblasts in the modified group had more mature differentiation in the pores compared to the unmodified group.Such implants can form solid,biologically compatible bone grafts with bone tissues,exhibiting good osseointegration.
基金Project(2015WK3012) supported by the Hunan Provincial Science and Technology Department Project,ChinaProject(81571021) supported by the National Natural Science Foundation of China+2 种基金Project(225) supported by the High Level Health Personnel in Hunan Province,ChinaProject(621020094) supported by the State Key Laboratory of Powder Metallurgy of Central South University,ChinaProject(20160301) supported by New Talent Project of the Third Xiangya Hospital of Central South University,China
文摘Transfection efficiency of hydroxyapatite nanoparticles(HAnps)is relative to the particle size,morphology,surface charge,surface modifier and so on.This study prepared HAnps with doped Tb/Mg by hydrothermal synthesis method(HTSM)and investigated the effects of different Tb/Mg contents on the morphology,particle size,surface charge,composition and cellular endocytosis of HAnps.The results showed that Mg-HAnps possessed better dispersion ability than Tb-HAnps.With increasing doping content of Tb/Mg-HAnps,the granularity of Tb-HAnps increased,while that of Mg-HAnps declined.Both particle size and zeta potential of Mg-HAnps were lower than those of Tb-HAnps.7.5%Mg-doping HAnps presented relatively uniform slender rod morphology with average size of30nm,while10%Mg-doping HAnps were prone to agglomeration.Moreover,Mg-HAnps-GFP(green fluorescent protein)endocytosed by MG63cells was dotted in the perinuclear region,while Tb-HAnps were more likely to aggregate.In conclusion,as gene vectors,Mg-HAnps showed enhanced properties compared to Tb-HAnps.
基金We thank for the funding support from the National Natural Science Foundation of China(No.81973670)the Natural Science Foundation of Hunan Province(No.2018JJ2297)+1 种基金the Key Program of Scientific Research Fund of Hunan Provincial Education Department(No.19A370)the Project of Research Learning and Innovative Experiment for College Students in Hunan(No.2016284,No.2016281,No.2017281and No.2018420).
文摘Objective Pharmacological methods were used to screen targets and signaling pathways of Ma Xing Shi Gan Decoction(MXSGD)during influenza treatments,and mechanisms underlying antiinfluenza effects were elucidated.Methods The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and relevant literature were searched under predefined conditions to identify the main compounds and their targets.Interactions between the target proteins were predicted using the STRING database.Gene Ontology(GO)functional enrichment analyses and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were performed on the core targets involved in the influenza protein-protein interaction(PPI)network,using WebGestalt and the reactome database.iGEMDOCK was used for molecular docking of receptors and ligands to produce docking scores,and the results were visualized using Autodock and PyMOL.Results In total,126 major compounds and their respective targets were screened.355 influenza target proteins and 1221 influenza protein interactions were predicted using the STRING database.Influenza-related signaling pathways were strongly enriched in pharmacodynamic targets of MXSGD such as cytokine signaling in immune system and signaling by interleukin.The main biological process was response to the stimulates.Molecular docking results showed that RELALicochalcone A docking elicited by MXSGD,was superior to that of other target proteins and active compounds,suggesting that the docking site is also the main effector site of MXSGD during influenza treatments.Conclusions The results showed that MXSGD exerts antiinfluenza effects by interfering with virus adsorption,inhibiting virus proliferation,influencing immune functions and protecting host cells,which may prevent inflammation-induced tissue damage.
基金We thank for the funding support from the Key Research and Development Plan of China(No.2017YFC1703306)Youth Project of Natural Science Foundation of Hunan Province(No.2019JJ50453)+2 种基金Project of Hunan Health Commission(No.202112072217)Open Fund Project of Hunan University of Traditional Chinese Medicine(No.2018JK02)General Project of Education Department of Hunan Province(No.19C1318).
文摘Objective A classification and diagnosis model for psoriasis based on deep residual network is proposed in this paper.Which using deep learning technology to classify and diagnose psoriasis can help reduce the burden of doctors,simplify the diagnosis and treatment process,and improve the quality of diagnosis.Methods Firstly,data enhancement,image resizings,and TFRecord coding are used to preprocess the input of the model,and then a 34-layer deep residual network(ResNet-34)is constructed to extract the characteristics of psoriasis.Finally,we used the Adam algorithm as the optimizer to train ResNet-34,used cross-entropy as the loss function of ResNet-34 in this study to measure the accuracy of the model,and obtained an optimized ResNet-34 model for psoriasis diagnosis.Results The experimental results based on k-fold cross validation show that the proposed model is superior to other diagnostic methods in terms of recall rate,F1-score and ROC curve.Conclusion The ResNet-34 model can achieve accurate diagnosis of psoriasis,and provide technical support for data analysis and intelligent diagnosis and treatment of psoriasis.
基金supported by the National Science Foundation for Distinguished Young Scholars,China(82025021).
文摘Critical care medicine focuses on understanding the pathophysiological mechanisms and treatment approaches for life-threatening conditions,including sepsis,severe trauma/burns,hemorrhagic shock,heatstroke,and acute pancreatitis,all of which have high incidence rates.These conditions are primarily characterized by acute multi-organ dysfunction,with sudden onset,severe illness,and high mortality rates.Additionally,critical care treatment demands substantial medical resources,imposing significant economic burdens on patients’families and society.In recent years,critical care medicine has achieved notable progress,especially in multidisciplinary integration with immunology-based fields.Collaboration across disciplines has not only accelerated advancements in critical care but also propelled the rapid development of modern immunology.This paper provides an overview and assessment of the cross-disciplinary fusion between critical care medicine and immunology,exploring how these fields related extensions mutually enhance each other.It further analyzes China’s potential to become a global leader in this area within the next 5 to 10 years.
基金supported by the Clinical Medical Technology Innovation Guide Project of Hunan Province,China(2020SK53609).
文摘Objective:Sleep quality in kidney transplant recipients is closely associated with symptoms of fatigue and depression.Although subjective assessment tools like the Pittsburgh Sleep Quality Index and the Richards-Campbell Sleep Questionnaire(RCSQ)are widely used to evaluate sleep quality,there is a lack of studies utilizing polysomnography for objective evaluation.This study aims to investigate the correlation between sleep quality,fatigue,and depression in kidney transplant recipients using both subjective and objective methods,providing scientific evidence for improving their quality of life.Methods:The cross-sectional study conveniently sampled 50 kidney transplant recipients from a transplant center in a general hospital between August 2018 and March 2020.Subjective and objective sleep parameters were evaluated using the RCQS and polysomnography,respectively.The Fatigue Severity Scale was used to assess fatigue,and the Hamilton Depression Scale was employed to measure depression levels.Results:A lower proportion of rapid eye movement(REM)sleep was associated with increased fatigue.Additionally,higher wake time percentages and poorer sleep quality were significantly correlated with greater depression severity.Conclusion:This study underscores the critical importance of effectively managing sleep quality in kidney transplant recipients and addressing their fatigue and depression symptoms.These findings lay a foundation for developing targeted nursing and therapeutic strategies.