Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2...Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoacfivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of dead- end filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage Ms2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming offthe membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-Ti02 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.展开更多
文摘Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoacfivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of dead- end filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage Ms2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming offthe membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-Ti02 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.