期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于安全深度强化学习的电网有功频率协同优化控制
1
作者 周毅 周良才 +2 位作者 史迪 赵小英 闪鑫 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期682-692,共11页
可再生能源占比不断增加给互联电网频率控制带来严峻考验.由于常规的自动发电控制(AGC)策略没有考虑电网潮流安全约束,所以传统方法根据专家知识和经验进行尝试性发电机功率调整,需耗费较多时间;基于最优电力潮流的互联电网AGC优化模型... 可再生能源占比不断增加给互联电网频率控制带来严峻考验.由于常规的自动发电控制(AGC)策略没有考虑电网潮流安全约束,所以传统方法根据专家知识和经验进行尝试性发电机功率调整,需耗费较多时间;基于最优电力潮流的互联电网AGC优化模型由于非凸性和大规模性,求解时间较长且存在收敛性问题.鉴于常规深度强化学习具有“离线训练、在线端对端形成策略”的优点,但在动作探索过程中无法保证系统安全性,提出一种基于安全深度强化学习的电网有功频率协同优化控制方法.首先,将电网频率控制建模为约束马尔可夫决策过程,对决策过程添加相关安全约束进行智能体设计;然后,基于华东电网实际系统算例对智能体进行训练和性能提升;最后,对比智能体决策与常规AGC策略效果.结果表明:所提方法在多种运行方式下可快速生成有功频率控制策略,且保证系统频率恢复过程中电网的安全性,可辅助调度员在线决策. 展开更多
关键词 有功频率协同控制 人工智能 深度强化学习 约束马尔可夫决策过程 智能体
下载PDF
Implications of Stahl's Theorems to Holomorphic Embedding Part I: Theoretical Convergence 被引量:1
2
作者 Songyan Li Daniel Tylavsky +1 位作者 Di Shi Zhiwei Wang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第4期761-772,共12页
What is known as StahPs Theorem in power engineering circles is used to justify a convergence guarantee of the Holomorphic Embedding Method(HEM)as it applies to powerflow(PF)problem.In this two-part paper,we examine i... What is known as StahPs Theorem in power engineering circles is used to justify a convergence guarantee of the Holomorphic Embedding Method(HEM)as it applies to powerflow(PF)problem.In this two-part paper,we examine in more detail the implications of Stahl's theorems to both theoretical and numerical convergence for a wider range of problems to which these theorems are now being applied.We show that the difference between StahPs extremal domain and the function's domain is responsible for theoretical nonconvergence and that the fundamental cause of numerical nonconvergence is the magnitude of logarithmic capacity of the branch cut,a concept central to understanding nonconvergence.We introduce theorems using the necessary mathematical parlance and then translate the language to show its implications to convergence of nonlinear problems in general and specifically to the PF problem.We show that,among other possibilities,the existence of Chebotarev points,which are embedding specific,are a possible theoretical impediment to convergence・The theoretical foundation of Part I is necessary for understanding the numerical behavior of HEM discussed in Part II. 展开更多
关键词 Analytic continuation holomorphic embedding method power flow Pade approximants HEM Stahl's theorems
原文传递
Implications of Stahl's Theorems to Holomorphic Embedding Part II: Numerical Convergence 被引量:1
3
作者 Abhinav Dronamraju Songyan Li +4 位作者 Qirui Li Yuting Li Daniel Tylavsky Di Shi Zhiwei Wang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第4期773-784,共12页
What has become known as Stahl's Theorem in power-engineering circles has been used to justify a convergence guarantee of the Holomorphic Embedding Method(HEM)as it applies to the power-flow problem.In this,the se... What has become known as Stahl's Theorem in power-engineering circles has been used to justify a convergence guarantee of the Holomorphic Embedding Method(HEM)as it applies to the power-flow problem.In this,the second part of a two-part paper,we examine implications to numerical convergence of the HEM and the numerical properties of a Pade approximant algorithm.We show that even if the point of interest is within the convergence domain,numerical convergence of the sequence of Pade approximants computed with finite precision is not guaranteed.We propose a convergence factor equation that can be used to both estimate the convergence rate and the capacity of the branch cut.We also show that the study of convergence properties of the Pade approximant is the study of the location of the branch-points of the function,which in turn dictate branch-cut topology and capacity and,therefore,convergence rate. 展开更多
关键词 Analytic continuation HEM holomorphic embedding method power flow Pade approximants StahPs theorems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部