We investigated the hyperthermal and magnetic properties of the stable magnetic suspension of magnetite nanoparticles. With this purpose in mind, we designed a low-frequency oscillator, 300 W, 300 KHz. A sample of the...We investigated the hyperthermal and magnetic properties of the stable magnetic suspension of magnetite nanoparticles. With this purpose in mind, we designed a low-frequency oscillator, 300 W, 300 KHz. A sample of the magnetic suspension was placed in the induction coil and heated up to 55°C for 30 minutes. Based on the results of measurements of transverse susceptibility, we can infer that the suspension was superparamagnetic at room temperature and transformed into the magnetic state at nitrogen temperature. Comparing the obtained experimental results with the literature data, we assessed the mean size of nanoparticles, which made up about 10 nm. Computer simulation assessment on the basis of magnetization curve gives close results.展开更多
文摘We investigated the hyperthermal and magnetic properties of the stable magnetic suspension of magnetite nanoparticles. With this purpose in mind, we designed a low-frequency oscillator, 300 W, 300 KHz. A sample of the magnetic suspension was placed in the induction coil and heated up to 55°C for 30 minutes. Based on the results of measurements of transverse susceptibility, we can infer that the suspension was superparamagnetic at room temperature and transformed into the magnetic state at nitrogen temperature. Comparing the obtained experimental results with the literature data, we assessed the mean size of nanoparticles, which made up about 10 nm. Computer simulation assessment on the basis of magnetization curve gives close results.