期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Static solution on four-region spherial cavity expansion model in a pressure sensitive medium
1
作者 于雪梅 唐立强 杨勇 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期405-408,共4页
Spherical cavity expansion model is often used to study the mechanic characteristics of pressure sensitive mediums. The most important one we do in the paper is that we construct a four-region model with σθ≠0 in da... Spherical cavity expansion model is often used to study the mechanic characteristics of pressure sensitive mediums. The most important one we do in the paper is that we construct a four-region model with σθ≠0 in damage region,which is different from what Satapathy did before and is more reasonable. By adopting this model,different constitutive equations were constructed by different method-elastic mechanics in elastic region,damage mechanics and fracture mechanics in damage region,and macro-micro mechanics theory in plastic region. Then using Durban's self-similarity assumption,the control differential equations with boundary conditions were established,and the static numerical solution of stress field and displacement field in the three different regions of elastic,damage and plastic area were discussed respectively. Results showed that this four-region model can describe precisely the mechanic characteristics of pressure sensitive mediums under initial pressure. 展开更多
关键词 pressure-sensitive material SPHERICAL CAVITY expansion damage MECHANICS SELF-SIMILARITY ASSUMPTION CONSTITUTIVE equation
下载PDF
Molding simulation of airfoil foam sandwich structure and interference optimization of foam-core
2
作者 Qianying CEN Zeyang XING +4 位作者 Qingyou WANG Lili LI Zhigang WANG Zhanjun WU Ling LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期325-338,共14页
During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the in... During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the interference of polymethacrylimide(PMI)foam core during the CCM process.Firstly,based on some basic parameters of composite skin and foam core obtained by experiments or multi-scale simulations,a thermal-curing-mechanical coupling analysis for the CCM of foam sandwich structure is performed and the results show that the maximum stress within foam core occurs at the completion of mold-closing,which tends to decrease during the subsequent CCM process.Then,the foam core is thickened by traditional equidistant-thickening method,and the simulation reveals that the foam core at the trailing edge tends to collapse because of stress concentration.Conversely,if the foam core is thickened by the proposed EPT method,the mold-closing caused collapse at the trailing edge can be effectively avoided,and a thickening ratio range of 0.6%–2.0%is obtained,which is further proved by practical verifications.Therefore,the interference design scheme proposed can ensure the molding quality and effectively reduce the scrap of molded products. 展开更多
关键词 Airfoil foam sandwich structure Polymethacrylimide(PMI)foam INTERFERENCE CO-CURING Molding simulation
原文传递
Placement suitability criteria of composite tape for mould surface in automated tape placement 被引量:8
3
作者 Zhang Peng Sun Ronglei +1 位作者 Zhao Xueying Hu Lingjin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1574-1581,共8页
Automated tape placement is an important automated process used for fabrication of large composite structures in aeronautical industry. The carbon fiber composite parts realized with this process tend to replace the a... Automated tape placement is an important automated process used for fabrication of large composite structures in aeronautical industry. The carbon fiber composite parts realized with this process tend to replace the aluminum parts produced by high-speed machining. It is difficult to determine the appropriate width of the composite tape in automated tape placement. Wrinkling will appear in the tape if it does not suit for the mould surface. Thus, this paper deals with establishing placement suitability criteria of the composite tape for the mould surface. With the assumptions for ideal mapping and by applying some principles and theorems of differential geometry, the centerline trajectory of the composite tape is identified to follow the geodesic. The placement suitability of the composite tape is examined on three different types of non-developable mould surfaces and four criteria are derived. The developed criteria have been used to test the deposition process over several mould surfaces and the appropriate width for each mould surface is obtained by referring to these criteria. 展开更多
关键词 Automated tape placementGeodesic:Placement suitability WRINKLING Composites
原文传递
Study on Compressive Properties of Z-pinned Laminates in RTD and Hygrothermal Environment 被引量:4
4
作者 LI Chenghu YAN Ying +2 位作者 WANG Ping QI Desheng WEN Yonghai 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第1期64-70,共7页
Compressive tests of [0]t2 and [90]t2 unidirectional laminates and [45/0/-45/90] 2s quasi-isotropic laminates are accomplished in both room-temperature and dry (RTD) and hygrothermal environment. And simulation stud... Compressive tests of [0]t2 and [90]t2 unidirectional laminates and [45/0/-45/90] 2s quasi-isotropic laminates are accomplished in both room-temperature and dry (RTD) and hygrothermal environment. And simulation studies on the compressive strength of Z-pinned laminates of [0112 and [45/0/-45/90] 2s are conducted by using finite element analysis (FEA). A microstructural unit cell for FEA is created to simulate a representative laminates unit with one pin. Within the unit cell, the first directions of the elements' material coordinate systems are changed to simulate the fibres' deflecting around the pin. The hygrothermal effect is simulated by the material properties' adjustments which are determined by the compressive tests of non-pined laminates. The experimental results indicate that the percentage of reduction in the compressive modulus of Z-pinned laminates caused by Z-pin becomes smaller with the percentage of 0° fibres decreasing in the laminates; the compressive strength of quasi-isotropic laminates reduces and the percentage of the reduction in the compressive strength declines with Z-pin volume content increasing, and the moisture absorption ratio of the Z-pinned specimens is greater than that of the non-pinned specimens, because the cracks around Z-pin increase the moisture absorption. In addition, the simulations show that the deflection of fibres around Z-pin is the main factor for the reduction in the compressive strength of Z-pinned unidirectional laminates, the dilution of fibre volume content caused by resin-rich pocket is the principal factor for the decline in the compressive strength of Z-pinned quasi-istropic laminates, and the compressive strength of Z-pinned specimens in hygrothermal environment reduces as the result of superimposition of some factors, including the changes in material properties caused by hygrothermal environment, the deflection of fibres and the resin-rich pocket caused by Z-pin. 展开更多
关键词 Z-PIN LAMINATES hygrothermal environment simulation study STRENGTH
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部