Three-dimensional(3D)hydrodynamic numerical simulations of laser driven thin-shell gas-filled microballoons have been carried out using the computer code MULTI-3D[Ramis et al.,Phys.Plasmas 21,082710(2014)].The studied...Three-dimensional(3D)hydrodynamic numerical simulations of laser driven thin-shell gas-filled microballoons have been carried out using the computer code MULTI-3D[Ramis et al.,Phys.Plasmas 21,082710(2014)].The studied configuration corresponds to experiments carried at the ORION laser facility[Hopps et al.,Plasma Phys.Controlled Fusion 57,064002(2015)].The MULTI-3D code solves single-temperature hydrodynamics,electron heat transport,and 3D ray tracing with inverse bremsstrahlung absorption on unstructured Lagrangian grids.Special emphasis has been placed on the genuine 3D effects that are inaccessible to calculations using simplified 1D or 2D geometries.These include the consequences of(i)a finite number of laser beams(10 in the experimental campaign),(ii)intensity irregularities in the beam crosssectional profiles,(iii)laser beam misalignments,and(iv)power imbalance between beams.The consequences of these imperfections have been quantified by post-processing the numerical results in terms of capsule nonuniformities(synthetic emission and absorption images)and implosion efficiency(convergence ratio and neutron yield).Statistical analysis of these outcomes allows determination of the laser tolerances that guarantee a given level of target performance.展开更多
As our understanding of the environmental impact of fossil fuel based energy production increases, it is becoming clear that the world needs a new energy solution to meet the challenges of the future. A transformation...As our understanding of the environmental impact of fossil fuel based energy production increases, it is becoming clear that the world needs a new energy solution to meet the challenges of the future. A transformation is required in the energy market to meet the need for low carbon, sustainable, affordable generation matched with security of supply. In the short term, an increasing contribution from renewable sources may provide a solution in some locations. In the longer term,low carbon, sustainable solutions must be developed to meet base load energy demand, if the world is to avoid an ever increasing energy gap and the attendant political instabilities. Laser-driven inertial fusion energy(IFE) may offer such a solution.展开更多
There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdo...There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility(CLF), STFC(Science and Technology Facilities Council)Rutherford Appleton Laboratory(RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of AstraGemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.展开更多
The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion...The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser–capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.展开更多
Supersonic flows with high Mach number are ubiquitous in astrophysics. High-powered lasers also have the ability to drive high Mach number, radiating shock waves in laboratory plasmas, and recent experiments along the...Supersonic flows with high Mach number are ubiquitous in astrophysics. High-powered lasers also have the ability to drive high Mach number, radiating shock waves in laboratory plasmas, and recent experiments along these lines have made it possible to recreate analogs of high Mach-number astrophysical flows under controlled conditions. Streak cameras such as the Rochester optical streak system(ROSS) are particularly helpful in diagnosing such experiments,because they acquire spatially resolved measurements of the radiating gas continuously over a large time interval,making it easy to observe how any shock waves and ablation fronts present in the system evolve with time. This paper summarizes new ROSS observations of a laboratory analog of the collision of a stellar wind with an ablating planetary atmosphere embedded within a magnetosphere. We find good agreement between the observed ROSS data and numerical models obtained with the FLASH code, but only when the effects of optical depth are properly taken into account.展开更多
A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studi...A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary number NBof laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target.This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities using the calculated illumination. A limited number of example applications to direct drive on the Laser Mega Joule(LMJ) are described.展开更多
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe...This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.展开更多
We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a...We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a two-layer CH/CH–Br foil drives a∼40 km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar.The use of gas-cell targets with large(several millimetres)lateral and axial extent allows the shock to propagate freely without any wall interactions,and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved,pointprojection X-ray backlighting(∼20µm source size,4.3 keV photon energy).Single shocks were imaged up to 100 ns after the onset of the laser drive,allowing to probe the growth of spatial nonuniformities in the shock apex.These results are compared with experiments looking at counter-propagating shocks,showing a symmetric drive that leads to a collision and stagnation from∼40 ns onward.We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN,which provides expected plasma parameters for the design of future experiments in this facility.展开更多
Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray compute...Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.展开更多
In 2018 the journal High Power Laser Science and Engineering produced a Special Issue on Laboratory Astrophysics.The scope of the special issue was to span the latest research and reviews on the following topics relat...In 2018 the journal High Power Laser Science and Engineering produced a Special Issue on Laboratory Astrophysics.The scope of the special issue was to span the latest research and reviews on the following topics related to laboratory astrophysics and related phenomena.The topics invited for inclusion were:·collisionless shocks;·planetary formation dynamics and planetary interiors;·warm dense matter;·hydrodynamic and magnetohydrodynamic instabilities;·magnetic reconnection;·relativistic plasmas;·magnetic turbulence and magnetic amplification;·nuclear astrophysics;·radiative transfer and radiation hydrodynamics;·target design;·laser-based HED facilities.although this was not meant as an exhaustive list.As is usual with a special issue of this type Guest Editors were invited to lead in sourcing articles.展开更多
The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to ...The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mrn thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is ~600 mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J. The second-harmonic capability has been upgraded by taking two square 300 mmx 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.展开更多
In 2017 the journal High Power Laser Science and Engineering produced a Special Issue on Target Fabrication.The scope of the special issue was to span the latest developments and reviews on topics related to their dep...In 2017 the journal High Power Laser Science and Engineering produced a Special Issue on Target Fabrication.The scope of the special issue was to span the latest developments and reviews on topics related to their deployment on ultrahigh-energy/power laser facilities.The topics invited for inclusion were:·Target assembly·Novel characterization展开更多
This paper describes the design and fabrication of a range of ‘gas cell' microtargets produced by the Target Fabrication Group in the Central Laser Facility(CLF) for academic access experiments on the Orion laser...This paper describes the design and fabrication of a range of ‘gas cell' microtargets produced by the Target Fabrication Group in the Central Laser Facility(CLF) for academic access experiments on the Orion laser facility at the Atomic Weapons Establishment(AWE). The experiments were carried out by an academic consortium led by Imperial College London. The underlying target methodology was an evolution of a range of targets used for experiments on radiative shocks and involved the fabrication of a precision machined cell containing a number of apertures for interaction foils or diagnostic windows. The interior of the cell was gas-filled before laser irradiation. This paper details the assembly processes, thin film requirements and micro-machining processes needed to produce the targets. Also described is the implementation of a gas-fill system to produce targets that are filled to a pressure of 0.1–1 bar. The paper discusses the challenges that are posed by such a target.展开更多
基金The research of R.R.was supported by the Spanish Ministerio de Econom´ıa y Competitividad,Project No.ENE2014-54960-R and by the EUROfusion Consortium under Project No.AWP15-ENR-01/CEA-02.M.T.is supported by CEA-ENS LRC-MESO Grant No.2018-011.
文摘Three-dimensional(3D)hydrodynamic numerical simulations of laser driven thin-shell gas-filled microballoons have been carried out using the computer code MULTI-3D[Ramis et al.,Phys.Plasmas 21,082710(2014)].The studied configuration corresponds to experiments carried at the ORION laser facility[Hopps et al.,Plasma Phys.Controlled Fusion 57,064002(2015)].The MULTI-3D code solves single-temperature hydrodynamics,electron heat transport,and 3D ray tracing with inverse bremsstrahlung absorption on unstructured Lagrangian grids.Special emphasis has been placed on the genuine 3D effects that are inaccessible to calculations using simplified 1D or 2D geometries.These include the consequences of(i)a finite number of laser beams(10 in the experimental campaign),(ii)intensity irregularities in the beam crosssectional profiles,(iii)laser beam misalignments,and(iv)power imbalance between beams.The consequences of these imperfections have been quantified by post-processing the numerical results in terms of capsule nonuniformities(synthetic emission and absorption images)and implosion efficiency(convergence ratio and neutron yield).Statistical analysis of these outcomes allows determination of the laser tolerances that guarantee a given level of target performance.
基金The HiPER Preparatory Phase Project was supported by FP7-Infrastructures-2007-1 (Grant Agreement number 211737): ‘The European High Power laser Energy Research facility Preparatory Phase Study’the UK Science, Technology and Facilities Council the Ministry of Education, Youth and Sports of the Czech Republic and many ‘in-kind contributions’ from the HiPER partners and their sponsoring agencies
文摘As our understanding of the environmental impact of fossil fuel based energy production increases, it is becoming clear that the world needs a new energy solution to meet the challenges of the future. A transformation is required in the energy market to meet the need for low carbon, sustainable, affordable generation matched with security of supply. In the short term, an increasing contribution from renewable sources may provide a solution in some locations. In the longer term,low carbon, sustainable solutions must be developed to meet base load energy demand, if the world is to avoid an ever increasing energy gap and the attendant political instabilities. Laser-driven inertial fusion energy(IFE) may offer such a solution.
文摘There are several petawatt-scale laser facilities around the world and the fidelity of the pulses to target is critical in achieving the highest focused intensities and the highest possible contrast. The United Kingdom has three such laser facilities which are currently open for access to the academic community: Orion at AWE, Aldermaston and Vulcan & Astra-Gemini at the Central Laser Facility(CLF), STFC(Science and Technology Facilities Council)Rutherford Appleton Laboratory(RAL). These facilities represent the two main classes of petawatt facilities: the mixed OPCPA/Nd:glass high-energy systems of Orion and Vulcan and the ultra-short-pulse Ti:Sapphire system of AstraGemini. Many of the techniques used to enhance and control the pulse generation and delivery to target have been pioneered on these facilities. In this paper, we present the system designs which make this possible and discuss the contrast enhancement schemes that have been implemented.
基金the support given to this work. R. R. was partially supported by the EURATOM/CIEMAT association in the framework of the ‘IFE Keep-in-Touch Activities’. S. W.acknowledges support from the Czech Science Foundation (Project No. CZ.1.07/2.3.00/20.0279) and from ELI (Project No. CZ.1.05/1.1.00/02.0061)
文摘The use of the Laser MegaJoule facility within the shock ignition scheme has been considered. In the first part of the study, one-dimensional hydrodynamic calculations were performed for an inertial confinement fusion capsule in the context of the shock ignition scheme providing the energy gain and an estimation of the increase of the peak power due to the reduction of the photon penetration expected during the high-intensity spike pulse. In the second part, we considered a Laser MegaJoule configuration consisting of 176 laser beams that have been grouped providing two different irradiation schemes. In this configuration the maximum available energy and power are 1.3 MJ and 440 TW. Optimization of the laser–capsule parameters that minimize the irradiation non-uniformity during the first few ns of the foot pulse has been performed. The calculations take into account the specific elliptical laser intensity profile provided at the Laser MegaJoule and the expected beam uncertainties. A significant improvement of the illumination uniformity provided by the polar direct drive technique has been demonstrated. Three-dimensional hydrodynamic calculations have been performed in order to analyse the magnitude of the azimuthal component of the irradiation that is neglected in twodimensional hydrodynamic simulations.
基金the DOE NLUF program DE-FOA-0001568the Data Analysis and Visualization Cyber Infrastructure program OCI-0959097
文摘Supersonic flows with high Mach number are ubiquitous in astrophysics. High-powered lasers also have the ability to drive high Mach number, radiating shock waves in laboratory plasmas, and recent experiments along these lines have made it possible to recreate analogs of high Mach-number astrophysical flows under controlled conditions. Streak cameras such as the Rochester optical streak system(ROSS) are particularly helpful in diagnosing such experiments,because they acquire spatially resolved measurements of the radiating gas continuously over a large time interval,making it easy to observe how any shock waves and ablation fronts present in the system evolve with time. This paper summarizes new ROSS observations of a laboratory analog of the collision of a stellar wind with an ablating planetary atmosphere embedded within a magnetosphere. We find good agreement between the observed ROSS data and numerical models obtained with the FLASH code, but only when the effects of optical depth are properly taken into account.
基金partially supported by the EURATOM/CIEMAT association in the framework of the ‘IFE Keep-in-Touch Activities’
文摘A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary number NBof laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target.This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities using the calculated illumination. A limited number of example applications to direct drive on the Laser Mega Joule(LMJ) are described.
基金the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014–2018 and 2019– 2020 under grant agreement No. 633053the ELI Beamlines Projects LQ1606 and 19-02545S with financial support from the Czech Science Foundation and the Ministry of Education, Youth and Sports of the Czech Republic+6 种基金support from the European Regional Development Fund, the project ELITAS CZ.02.1.01/0.0/0.0/16 013/0001793the National Programme of ‘Sustainability Ⅱ’ and ELI phase 2 CZ.02.1.01/0.0/0.0/15008/0000162The PETAL project was designed and built by the CEA under the financial auspices of the Region Nouvelle Aquitaine, the French Government and the European Unionsupported by EPSRC grants EP/K022415/1 and EP/R006202supported by the European Cluster of Advanced Laser Light Sources, EUCALL, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654220funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 Laserlab-Europethe use of the EPOCH PIC code (developed under EPSRC grant EP/G054940/1).
文摘This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.
基金the Royal Society(UK)through a University Research Fellowship(URF-R-180032)a Research Fellows Enhancement Award(RGF-EA-180240)+2 种基金an International Exchanges grant(IES-R3-170140)a Research Grant(RG2017-R2)The authors would like to thank the operation group of the SG-II laser facility.C.S.acknowledges support from the French INSU-PNPS programme.U.C.acknowledges support by the project Advanced Research(CZ.02.1.01/0.0/0.0/16_019/0000789)from European Regional Development Fund(ADONIS)。
文摘We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a two-layer CH/CH–Br foil drives a∼40 km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar.The use of gas-cell targets with large(several millimetres)lateral and axial extent allows the shock to propagate freely without any wall interactions,and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved,pointprojection X-ray backlighting(∼20µm source size,4.3 keV photon energy).Single shocks were imaged up to 100 ns after the onset of the laser drive,allowing to probe the growth of spatial nonuniformities in the shock apex.These results are compared with experiments looking at counter-propagating shocks,showing a symmetric drive that leads to a collision and stagnation from∼40 ns onward.We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN,which provides expected plasma parameters for the design of future experiments in this facility.
文摘Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.
文摘In 2018 the journal High Power Laser Science and Engineering produced a Special Issue on Laboratory Astrophysics.The scope of the special issue was to span the latest research and reviews on the following topics related to laboratory astrophysics and related phenomena.The topics invited for inclusion were:·collisionless shocks;·planetary formation dynamics and planetary interiors;·warm dense matter;·hydrodynamic and magnetohydrodynamic instabilities;·magnetic reconnection;·relativistic plasmas;·magnetic turbulence and magnetic amplification;·nuclear astrophysics;·radiative transfer and radiation hydrodynamics;·target design;·laser-based HED facilities.although this was not meant as an exhaustive list.As is usual with a special issue of this type Guest Editors were invited to lead in sourcing articles.
文摘The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mrn thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is ~600 mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J. The second-harmonic capability has been upgraded by taking two square 300 mmx 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.
文摘In 2017 the journal High Power Laser Science and Engineering produced a Special Issue on Target Fabrication.The scope of the special issue was to span the latest developments and reviews on topics related to their deployment on ultrahigh-energy/power laser facilities.The topics invited for inclusion were:·Target assembly·Novel characterization
文摘This paper describes the design and fabrication of a range of ‘gas cell' microtargets produced by the Target Fabrication Group in the Central Laser Facility(CLF) for academic access experiments on the Orion laser facility at the Atomic Weapons Establishment(AWE). The experiments were carried out by an academic consortium led by Imperial College London. The underlying target methodology was an evolution of a range of targets used for experiments on radiative shocks and involved the fabrication of a precision machined cell containing a number of apertures for interaction foils or diagnostic windows. The interior of the cell was gas-filled before laser irradiation. This paper details the assembly processes, thin film requirements and micro-machining processes needed to produce the targets. Also described is the implementation of a gas-fill system to produce targets that are filled to a pressure of 0.1–1 bar. The paper discusses the challenges that are posed by such a target.