期刊文献+
共找到386篇文章
< 1 2 20 >
每页显示 20 50 100
Estimating Key Phenological Dates of Multiple Rice Accessions Using Unmanned Aerial Vehicle-Based Plant Height Dynamics for Breeding
1
作者 HONG Weiyuan LI Ziqiu +5 位作者 FENG Xiangqian QIN Jinhua WANG Aidong JIN Shichao WANG Danying CHEN Song 《Rice science》 SCIE CSCD 2024年第5期617-628,I0066-I0070,共17页
Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimat... Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work. 展开更多
关键词 phenological date plant height unmanned aerial vehicle machine learning rice breeding
下载PDF
Epigenetic regulators as the foundation for molecular classification of colorectal cancer
2
作者 Zhenyu Liu Xin Zhou Fuchou Tang 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第7期547-552,共6页
Colorectal cancer (CRC) accounts for approximately 10% of newly diagnosed cancer cases and cancer-related deaths worldwide~1. The identification of molecular subtypes of CRCs has significantly advanced treatment strat... Colorectal cancer (CRC) accounts for approximately 10% of newly diagnosed cancer cases and cancer-related deaths worldwide~1. The identification of molecular subtypes of CRCs has significantly advanced treatment strategies,including targeted therapy and immunotherapy. 展开更多
关键词 cancer COLORECTAL CASES
下载PDF
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:7
3
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing Ni-based superalloys Residual stress Mechanisms of crack formation Methods of crack inhibition
下载PDF
Ambiently fostering solid electrolyte interphase for low-temperature lithium metal batteries 被引量:3
4
作者 Jia-Yue Duan Jin-Xiu Chen +7 位作者 Fang-Fang Wang Jin-Hao Zhang Xiao-Zhong Fan Liping Wang Yingze Song Wei Xia Yusheng Zhao Long Kong 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期473-478,I0012,共7页
Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.U... Despite being a leading candidate to meet stringent energy targets,lithium(Li) metal batteries(LMBs)face severe challenges at low temperatures such as dramatic increase in impedance,capacity loss and dendrite growth.Unambiguously fingerprinting rate-limited factors of low-temperature LMBs would encourage targeted approaches to promote performances.Herein,the charge transfer impedance across solid electrolyte interphase(SEI) is identified to restrict battery operation under low temperature,and we propose a facile approach on the basis of ambiently fostering SEI(af-SEI) to facilitate charge transfer.The concept of af-SEI stems from kinetic benefits and structural merits to construct SEI at ambient temperature over low temperature developed SEI that is temporally consuming to achieve steady state and that is structurally defective to incur dendrite growth.The af-SEI allows ionically conductive and morphologically uniform layer on the anode surface,which exhibits a lower resistance and induces an even deposition of Li in the subsequent low temperature battery operation.Armed with af-SEI,the LMBs deliver the improved rate performance and prolonged cycle life when subjected to low temperature cycling.This work unveils the underlying causes that limit low temperature LMB performances,and enlightens the facile test protocols to build up favorable SEI,beyond scope of material and morphology design. 展开更多
关键词 Li matel batteries Ambiently fostering SEI Charge transfer impedance Low temperature kinetics
下载PDF
Effects of fluorination on crystal structure and electrochemical performance of antiperovskite solid electrolytes 被引量:1
5
作者 Lei Gao Manrong Song +9 位作者 Ruo Zhao Songbai Han Jinlong Zhu Wei Xia Juncao Bian Liping Wang Song Gao Yonggang Wang Ruqiang Zou Yusheng Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期521-528,I0013,共9页
The development of all-solid-state lithium batteries(ASSLBs)depends on exploiting solid-state electrolytes(SSEs)with high ionic conductivity and electrochemical stability.Fluorination is generally considered to be an ... The development of all-solid-state lithium batteries(ASSLBs)depends on exploiting solid-state electrolytes(SSEs)with high ionic conductivity and electrochemical stability.Fluorination is generally considered to be an effective strategy to improve the ionic conductivity and electrochemical stability of inorganic SSEs.Here,we report the partial fluorination of the chlo rine sites in an antiperovskite,by which the orthorhombic Li_(2)OHCl was transformed into cubic Li_(2)OHCl_(0.9)F_(0.1),resulting in a fourfold increase in ionic conductivity at 30℃.The ab initio molecular dynamics simulations suggest that both the crystal symmetry and the anions electronegativity influence the diffusion of Li+in the antiperovskite structure.Besides,from the perspective of experiments and calculations,it is confirmed that fluorination is a feasible method to improve the electrochemical stability of antiperovskite SSEs.The LiFePO_(4)|Li cell based on Li_(2)OHCl_(0.9)F_(0.1) is also assembled and exhibits stable cycle performance,which indicates that fluorination of antiperovskite SSEs is an effective way to produce high-performance SSEs for practical application of ASSLBs. 展开更多
关键词 ANTIPEROVSKITE Solid-state electrolyte FLUORINATION Ionic conductivity
下载PDF
Large-Scale Energy Storage for Carbon Neutrality 被引量:1
6
作者 Ke Liu Yulong Ding 《Engineering》 SCIE EI CAS CSCD 2023年第10期1-1,共1页
The shift toward a dual-carbon strategy is expected to instigate extensive and profound changes across virtually all economic sectors and aspects of national life in China.The transformation and upgrading of energy sy... The shift toward a dual-carbon strategy is expected to instigate extensive and profound changes across virtually all economic sectors and aspects of national life in China.The transformation and upgrading of energy systems and related infrastructure are particularly noteworthy.The future of energy supply will likely be dominated by renewable generation.One of the most significant challenges in this future landscape is the fluctuation and variability of wind and solar power,which often lead to a substantial amount of curtailed wind,solar,and hydropower.Such curtailment has shown an increasing trend,becoming a major obstacle to the swift deployment of renewable power generation.This challenge must be addressed to ensure the successful implementation of the dual-carbon strategy and the dominance of renewable energy in the future. 展开更多
关键词 LANDSCAPE BECOMING LIKELY
下载PDF
Chiral detection of biomolecules based on reinforcement learning 被引量:3
7
作者 Yuxiang Chen Fengyu Zhang +8 位作者 Zhibo Dang Xiao He Chunxiong Luo Zhengchang Liu Pu Peng Yuchen Dai Yijing Huang Yu Li Zheyu Fang 《Opto-Electronic Science》 2023年第1期1-10,共10页
Chirality plays an important role in biological processes,and enantiomers often possess similar physical properties and different physiologic functions.In recent years,chiral detection of enantiomers become a popular ... Chirality plays an important role in biological processes,and enantiomers often possess similar physical properties and different physiologic functions.In recent years,chiral detection of enantiomers become a popular topic.Plasmonic metasurfaces enhance weak inherent chiral effects of biomolecules,so they are used in chiral detection.Artificial intelligence algorithm makes a lot of contribution to many aspects of nanophotonics.Here,we propose a nanostructure design method based on reinforcement learning and devise chiral nanostructures to distinguish enantiomers.The algorithm finds out the metallic nanostructures with a sharp peak in circular dichroism spectra and emphasizes the frequency shifts caused by nearfield interaction of nanostructures and biomolecules.Our work inspires universal and efficient machine-learning methods for nanophotonic design. 展开更多
关键词 chiral detection metasurface deep learning CATHODOLUMINESCENCE
下载PDF
GA Associated Dwarf 5 encodes an ent-kaurenoic acid oxidase required for maize gibberellin biosynthesis and morphogenesis 被引量:1
8
作者 Zuliang Li Baozhu Li +8 位作者 Junli Zhang Hongliang Wang Mao Wang Siyi Guo Pengtao Wang Zhi Li David WGalbraith Dandan Li Chun-Peng Song 《The Crop Journal》 SCIE CSCD 2023年第6期1742-1751,共10页
Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),charact... Gibberellin(GA)functions in plant growth and development.However,genes involved in the biosynthesis and regulation of GA in crop plants are poorly understood.We isolated the mutant gad5-1(GAAssociated Dwarf 5),characterized by dwarfing,short internodes,and dark green and short leaves.Map-based gene cloning and allelic verification confirmed that ZmGAD5 encodes ent-kaurenoic acid oxidase(KAO),which catalyzes KA(ent-kaurenoic acid)to GA12 conversion during GA biosynthesis in maize.ZmGAD5 is localized to the endoplasmic reticulum and is present in multiple maize organs.In gad5-1,the expression of ZmGAD5 is severely reduced,and the levels of the direct substrate of KAO,KA,is increased,leading to a reduction in GA content.The abnormal phenotype of gad5-1 was restored by exogenous application of GA3.The biomass,plant height,and levels of GA12 and GA3 in transgenic Arabidopsis overexpressing ZmGAD5 were increased in comparison with the corresponding controls Col-0.These findings deepen our understanding of genes involved in GA biosynthesis,and could lead to the development of maize lines with improved architecture and higher planting-density tolerance. 展开更多
关键词 Maize(Zea mays L.) ZmGAD5 GA biosynthesis KAO
下载PDF
A review of functional MRI application for brain research of Chinese language processing 被引量:1
9
作者 Jianqiao Ge Jia-Hong Gao 《Magnetic Resonance Letters》 2023年第1期1-13,I0002,共14页
As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language... As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language and cognition.In recent years,non-invasive neuroimaging techniques such as magnetic resonance imaging(MRI)blaze a new trail to comprehensively study specific neural correlates of Chinese language processing and Chinese speakers.We reviewed the application of functional MRI(fMRI)in such studies and some essential findings on brain systems in processing Chinese.Specifically,for example,the application of task fMRI and resting-state fMRI in observing the process of reading and writing the logographic characters and producing or listening to the tonal speech.Elementary cognitive neuroscience and several potential research directions around brain and Chinese language were discussed,which may be informative for future research. 展开更多
关键词 Functional MRI Language task Chinese language processing Human brain RESTING-STATE
下载PDF
Superior aggregation, morphology and photovoltaic performance enabled by fine tuning of fused electron-deficient units in polymer donors
10
作者 Mingrui Pu Xue Lai +5 位作者 Hui Chen Congcong Cao Zixiang Wei Yulin Zhu Leilei Tian Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期19-26,I0002,共9页
Copolymerization of an electron-rich donor(D)unit with an electron-deficient acceptor(A)unit to construct efficient D-π-A-πtype donors is an effective strategy for organic solar cell applications.The electron-defici... Copolymerization of an electron-rich donor(D)unit with an electron-deficient acceptor(A)unit to construct efficient D-π-A-πtype donors is an effective strategy for organic solar cell applications.The electron-deficient unit fusion,endows extendedπ-conjugation plane and insures excellent photoelectronic property,has great advantages to build A moiety and gradually receives considerable attention.In this work,we adopt benzo[2,1-b:3,4-b’]dithiophene and benzopyrazine(BP),benzothiadiazole(BT)and benzoselenadiazole(BS)to cleverly construct a series of fused A units with different electrondeficient ability,and further synthesize three polymer donors PBDP-BP,PBDP-BT,and PBDP-BS,respectively.The relationships between structure and performance were systematically investigated.PBDPBT shows a moderate aggregation behavior in both solution and film,and the highest hole mobility among the three polymers.After blending with Y6,the PBDP-BT:Y6-based film has the strongest absorption,favorable compatibility,superior crystallinity,and uniform phase separation morphology compared with PBDP-BP or PBDP-BS based blend films.Thus,the device based on PBDP-BT:Y6 has the highest and balanced charge mobility,suppressive recombination,reduced energy loss and achieves an outstanding PCE of 15.14%,which is superior to PBDP-BP:Y6(8.55%)and PBDP-BS:Y6(6.85%).These results provide learnable guidelines for future fused electron-deficient unit-based donor design for photovoltaic application. 展开更多
关键词 Polymer donor ELECTRON-DEFICIENT Aggregation behavior MORPHOLOGY Organic solar cell
下载PDF
dbSCI:A manually curated database of SARS-CoV-2 inhibitors for COVID-19
11
作者 QIANG WANG GUO ZHAO +6 位作者 LONGXIANG XIE XUAN LI XIXI YU QIONGSHAN LI BAOPING ZHENG ZULIPINUER WUSIMAN XIANGQIAN GUO 《BIOCELL》 SCIE 2023年第2期367-371,共5页
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)is the pathogen of the ongoing coronavirus disease 2019(COVID-19)global pandemic.Here,by centralizing published cell-based experiments,clinical trials,and vir... Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)is the pathogen of the ongoing coronavirus disease 2019(COVID-19)global pandemic.Here,by centralizing published cell-based experiments,clinical trials,and virtual drug screening data from the NCBI PubMed database,we developed a database of SARS-CoV-2 inhibitors for COVID-19,dbSCI,which includes 234 SARS-CoV-2 inhibitors collected from publications based on cell-based experiments,81 drugs of COVID-19 in clinical trials and 1305 potential SARS-CoV-2 inhibitors from bioinformatics analyses.dbSCI provides four major functions:(1)search the drug target or its inhibitor for SARS-CoV-2,(2)browse target/inhibitor information collected from cell experiments,clinical trials,and virtual drug screenings,(3)download,and(4)submit data.Each entry in dbSCI contains 18 types of information,including inhibitor/drug name,targeting protein,mechanism of inhibition,experimental technique,experimental sample type,and reference information.In summary,dbSCI provides a relatively comprehensive,credible repository for inhibitors/drugs against SARS-CoV-2 and their potential targeting mechanisms and it will be valuable for further studies to control COVID-19. 展开更多
关键词 SARS-CoV-2 COVID-19 INHIBITORS DRUGS DATABASE
下载PDF
Peripheral octamethyl-substituted nickel(Ⅱ)-phthalocyanine-decorated carbon-nanotube electrodes for high-performance all-solid-state flexible symmetric supercapacitors
12
作者 Yu Wang Minzhang Li +5 位作者 Rajendran Ramachandran Haiquan Shan Qian Chen Anxin Luo Fei Wang Zong-Xiang Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期214-225,I0006,共13页
Construction of advanced electrode materials with unique performance for supercapacitors(SCs)is essential to achieving high implementation in the commercial market.Here,we report a novel peripheral octamethyl-substitu... Construction of advanced electrode materials with unique performance for supercapacitors(SCs)is essential to achieving high implementation in the commercial market.Here,we report a novel peripheral octamethyl-substituted nickel(Ⅱ)phthalocyanine(Ni Me_(2)Pc)-based nanocomposite as the electrode material of all-solid-state SCs.The highly redox-active NiMe_(2)Pc/carboxylated carbon nanotube(CNTCOOH)dendritic nanocomposite provides rapid electron/electrolyte ion-transport pathways and exhibits excellent structural stability,resulting in high-capacity activity and impressive cycling stability.The composite prepared with the optimized weight ratio of Ni Me_(2)Pc:CNT-COOH(6:10)showed the highest specific capacitance of 330.5 F g^(-1)at 0.25 A g^(-1).The constructed NiMe_(2)Pc/CNT-COOH-based all-solid-state symmetric SC device showed excellent performance with a maximum energy density of 22.8 Wh kg^(-1)and outstanding cycling stability(111.6%retained after 35,000 cycles).Moreover,flexible carbon cloth significantly enhanced the energy density of the NiMe_(2)Pc/CNT-COOH all-solid-state symmetric device to 52.1 Wh kg^(-1)with 95.4%capacitance retention after 35,000 cycles,and it could be applied to highperformance flexible electronics applications.These findings provide a novel strategy to design phthalocyanine-based electrode materials for next-generation flexible SC devices. 展开更多
关键词 Nickel phthalocyanine Carbon nanotubes Nanocomposites Flexible supercapacitors Cycling stability
下载PDF
Formation of the structure-Ⅱgas hydrate from low-concentration propane mixed with methane
13
作者 Sanya Du Xiaomin Han +8 位作者 Wenjiu Cai Jinlong Zhu Xiaobai Ma Songbai Han Dongfeng Chen Yusheng Zhao Hui Li Hailong Lu Xiaohui Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期306-314,共9页
It has been recognized that a small amount of propane mixed with methane can change greatly in not only the thermodynamics but also the structural properties of gas hydrate.However,its mechanism is still not well unde... It has been recognized that a small amount of propane mixed with methane can change greatly in not only the thermodynamics but also the structural properties of gas hydrate.However,its mechanism is still not well understood yet.In this research,structure-Ⅱ(sⅡ)hydrate is synthesized using a methanepropane gas mixture with an initial mole ratio of 99:1,and it is found that large(5~(12)6~4)cages are cooccupied by multiple gases based on the rigid structure analysis of neutron diffraction data.The first principles calculation and molecular dynamics simulation are conducted to uncover the molecular mechanism for sⅡmethane-propane hydrate formation,revealing that the presence of propane inhibits the formation of structure-Ⅰ(sⅠ)hydrate but promotes sⅡhydrate formation.The results help to understand the accumulation mechanism of natural gas hydrate and benefit to optimize the condition for gas storage and transportation in hydrate form. 展开更多
关键词 Multiple guest molecules CLATHRATES Neutron powder diffraction Structural transformation Molecular mechanism
下载PDF
Crystallization Regulation and Morphological Evolution for HTM-free Tin-Lead (1.28eV) Alloyed Perovskite Solar Cells
14
作者 Hang Hu Xianyong Zhou +13 位作者 Jiabang Chen Deng Wang Dongyang Li Yulan Huang Luozheng Zhang Yuanjun Peng Feng Wang Jingxia Huang Naichao Chen Liang Sun Xuesong Liu Xingzhu Wang Jianyong Ouyang Baomin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期113-119,共7页
There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processe... There have been huge achievements of all-perovskite tandem solar cells,which recently realized the highest power conversion efficiency of 24.8%.However,the complex device structure and complicated manufacture processes severely restrict the further development of all-perovskite tandem solar cells.In this work,we successfully fabricated high-efficiency hole transport material-free(HTM-free)Sn−Pb alloyed narrow bandgap perovskite solar cells(PSCs)by introducing guanidinium thiocyanate(GASCN)and hydroiodic acid(HI)into the perovskite precursor solution.GASCN and HI play a positive synergy effect during perovskite crystallization process resulting in larger grain size,fewer surface defects,and lower trap density to suppress the Sn^(2+)oxidation degradation.Furthermore,they could effectively adjust the energy level of perovskite materials,reduce the energy level difference between perovskite and ITO resulting in more efficiently transport of free hole charge carriers.As a result,with adding GASCN and HI,the achieved highest power conversion efficiency of HTM-free devices increased from 12.58%to 17.85%,which is one of the highest PCEs among all values reported to date for the HTM-free narrow-bandgap(1.2-1.4 eV)Sn−Pb binary PSCs.Moreover,the optimized device shows improved environmental stability.Our additive strategy manifests a remarkable step towards the facile,cost-efficient fabrication of HTM-free perovskite-based tandem solar cells with both high efficiency and simple fabrication process. 展开更多
关键词 crystallization regulation hole transport layer-free mixed tin-lead narrow bandgap perovskite solar cells
下载PDF
Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of MicroTom tomato
15
作者 Jia-Yu Xue Hai-Yun Fan +8 位作者 Zhen Zeng Yu-Han Zhou Shuai-Ya Hu Sai-Xi Li Ying-Juan Cheng Xiang-Ru Meng Fei Chen Zhu-Qing Shao Yves Van de Peer 《Horticulture Research》 SCIE CSCD 2023年第9期13-23,共11页
MicroTom has a short growth cycle and high transformation efficiency,and is a prospective model plant for studying organ development,metabolism,and plant–microbe interactions.Here,with a newly assembled reference gen... MicroTom has a short growth cycle and high transformation efficiency,and is a prospective model plant for studying organ development,metabolism,and plant–microbe interactions.Here,with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments,we constructed multiple gene co-expression networks,which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth,e.g.arbuscular mycorrhizal symbiosis and fruit development.Additionally,non-coding RNAs,including miRNAs,lncRNAs,and circRNAs were also identified,together with their potential targets.Interacting networks between different types of non-coding RNAs(miRNA-lncRNA),and non-coding RNAs and genes(miRNA-mRNA and lncRNA-mRNA)were constructed as well.Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit.Lastly,we established a database(http://eplant.njau.edu.cn/microTomBase/)with genomic and transcriptomic data,as well as details of gene co-expression and interacting networks on MicroTom,and this database should be of great value to those who want to adopt MicroTom as a model plant for research. 展开更多
关键词 METABOLISM ORGANS NETWORKS
下载PDF
A historical overview of nano-optics:From near-field optics to plasmonics
16
作者 邓妙怡 朱星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期134-145,共12页
Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to o... Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then. 展开更多
关键词 NANO-OPTICS near-field optics surface plasmon plasmonic modulation
下载PDF
Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
17
作者 刘哲彤 刘秉尧 +8 位作者 梁冬冬 李晓梅 李晓敏 陈莉 朱瑞 徐军 魏同波 白雪冬 高鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期144-149,共6页
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ... To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications. 展开更多
关键词 nitride multiquantum wells defect CATHODOLUMINESCENCE scanning transmission electron microscopy
下载PDF
Challenges and Suggestions of Ethical Review on Clinical Research Involving Brain-Computer Interfaces
18
作者 Xue-Qin Wang Hong-Qiang Sun +3 位作者 Jia-Yue Si Zi-Yan Lin Xiao-Mei Zhai Lin Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2024年第2期131-139,共9页
Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain... Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain disease diagnosis and treatment,neurological rehabilitation,and mental health.However,BCI also raises several challenges and ethical concerns in clinical research.In this article,the authors investigate and discuss three aspects of BCI in medicine and healthcare:the state of international ethical governance,multidimensional ethical challenges pertaining to BCI in clinical research,and suggestive concerns for ethical review.Despite the great potential of frontier BCI research and development in the field of medical care,the ethical challenges induced by itself and the complexities of clinical research and brain function have put forward new special fields for ethics in BCI.To ensure"responsible innovation"in BCI research in healthcare and medicine,the creation of an ethical global governance framework and system,along with special guidelines for cutting-edge BCI research in medicine,is suggested. 展开更多
关键词 brain-computer interface clinical research BIOETHICS ethical governance ethical review
下载PDF
Designing N-doped graphene/ReSe_(2)/Ti_(3)C_(2) MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries 被引量:10
19
作者 Zhou Xia Xiwen Chen +7 位作者 Haina Cia Zhaodi Fan Yuyang Yi Wanjian Yin Nan Wei Jingsheng Cai Yanfeng Zhang Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期155-162,I0006,共9页
Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which ot... Developing high-performance anodes for potassium ion batteries(KIBs) is of paramount significance but remains challenging.In the normal sense,electrode materials are prepared by ubiquitous wet chemical routes,which otherwise might not be versatile enough to create desired heterostructures and/or form clean interfacial areas for fast transport of K-ions and electrons.Along this line,rate capability/cycling stability of resulting KIBs are greatly handicapped.Herein we present an all-chemical vapor deposition approach to harness the direct synthesis of nitrogen-doped graphene(NG)/rhenium diselenide(ReSe_2)hybrids over three-dimensional MXene supports as superior heterostructure anode material for KIBs.In such an innovative design,1 T'-ReSe2 nanoparticles are sandwiched in between the NG coatings and MXene frameworks via strong interfacial interactions,thereby affording facile K~+ diffusion,enhancing overall conductivity,boosting high-power performance and reinforcing structural stability of electrodes.Thus-constructed anode delivers an excellent rate performance of 138 mAh g^(-1) at 10.0 A g^(-1) and a high reversible capacity of 90 mAh g^(-1) at 5 A g^(-1) after 300 cycles.Furthermore,the potassium storage mechanism has been systematically probed by advanced in situlex situ characterization techniques in combination with first principles computations. 展开更多
关键词 K-ion batteries High-rate ReSe_(2) N-doped graphene HETEROSTRUCTURE
下载PDF
Electrolyte solvation chemistry for lithium-sulfur batteries with electrolyte-lean conditions 被引量:8
20
作者 Long Kong Lihong Yin +4 位作者 Fei Xu Juncao Bian Huimin Yuan Zhouguang Lu Yusheng Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期80-91,共12页
Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously em... Lithium-sulfur(Li-S)batteries possess overwhelming energy density of 2654 Wh kg-1,and are considered as the next-generation battery technology for energy demanding applications.Flooded electrolytes are ubiquitously employed in cells to ensure sufficient redox kinetics and preclude the interference of the electrolyte depletion due to side reactions with the lithium metal anode.This strategy is capable of enabling long-lasting,high-capacity and excellent-rate battery performances,but it mask the requirements of practical Li-S batteries,where high-sulfur-loading/content and lean electrolyte are prerequisite to realize the energy-dense Li-S batteries.Sparingly and highly solvating electrolytes have emerged as effective yet simple approaches to decrease the electrolyte/sulfur ratio through altering sulfur species and exerting new reaction pathways.Sparingly solvating electrolytes are characterized by few free solvents to solvate lithium polysulfides,rendering a quasi-solid sulfur conversion and decoupling the reaction mechanisms from electrolyte quantity used in cells;while highly solvating electrolytes adopt highdonicity or high-permittivity solvents and take their advantages of strong solvation ability toward polysulfide intermediates,thereby favoring the polysulfide formation and stabilizing unique radicals,which subsequently accelerate redox kinetics.Both solvation chemistry approaches have their respective features to allow the operation of cells under electrolyte-starved conditions.This Review discusses their unique features and basic physicochemical properties in the working Li-S batteries,presents remaining technical and scientific issues and provides future directions for the electrolyte chemistry to attain highenergy Li-S batteries. 展开更多
关键词 Li-S batteries Solvation chemistry Energy density POLYSULFIDES Lean electrolyte
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部