A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this stud...A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.展开更多
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af...The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.展开更多
Obtaining precise position of interested emitters passively has wide applications in both civilian and military fields.Different from traditional parameter measurement and direct position determination(DPD)method,rece...Obtaining precise position of interested emitters passively has wide applications in both civilian and military fields.Different from traditional parameter measurement and direct position determination(DPD)method,recently a new passive localization method based on synthetic aper-ture technique,named synthetic aperture positioning(SAP),has been proposed.The method com-pensates for the nonlinear phase produced by relative motion between the moving platform and the emitter,achieving coherent summation of intercepted signals.The SAP can obtain high-resolution and high-precision localization results at a low signal-to-noise ratio.This paper summarizes the research progress of SAP,including localization principles,spaceborne applications,and application scope analysis.Besides,the possible future outlook of SAP is considered.展开更多
Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused b...Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.展开更多
We demonstrate a Kerr-lens mode-locked Yb:Lu YSiO_(5)(Yb:LYSO)laser with the pulse duration of 54 fs,corresponding to a spectral bandwidth of 25 nm centered at 1062 nm.To the best of our knowledge,this is the shortest...We demonstrate a Kerr-lens mode-locked Yb:Lu YSiO_(5)(Yb:LYSO)laser with the pulse duration of 54 fs,corresponding to a spectral bandwidth of 25 nm centered at 1062 nm.To the best of our knowledge,this is the shortest pulse duration obtained from Yb:LYSO laser.At the repetition rate of 378.3 MHz,an output power of 111.6 m W is obtained using an output coupler with 0.6%transmittance,which can maintain long-time stable mode-locking more than 13 h.展开更多
The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introduci...The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introducing spin-polarized electrons in single-component photocatalytic materials emerged as a promising approach.However,the decreased redox ability of photocarriers in these materials becomes a new challenge.Herein,we mitigate this challenge with a carbon nitride sheet(CNs)/graphene nanoribbon(GNR)composite material that has a van der Waals heterostructures(vdWHs)and spin-polarized electron properties.Experimental results and theoretical calculations show that the heterostructure has a strong redox ability,high carrier-separation efficiency,and enhanced surface catalytic reaction.Consequently,the mixed-dimensional CNs/GNR vdWHs exhibit remarkable performance for H_(2)and O_(2)generation as well as CO_(2)production under visible-light irradiation without any cocatalyst.The spin-polarized vdWHs discovered in this study revealed a new type of photocatalytic materials and advanced the development of spintronics and photocatalysis.展开更多
In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple...In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple independent PV arrays.In each PV array,there are multiple independent PV subarrays.In this paper,a V-P droop control method with adaptive droop coefficient is proposed,which modifies the droop intercept based on the bus voltage deviation and the power per unit value of the PV array.This method ensures the accuracy of bus voltage and achieves proportional distribution of power between PV arrays based on the proposed topology structure in this paper.When the load changes or the output power of the PV array fluctuates,this method can ensure that power is distributed proportionally.The principle and control method of the proposed droop control method is analyzed in this paper.The effectiveness of the method is verified through MATLAB/Simulink simulation and experiment.Simulation and experimental results show that the proposed method can achieve power distributed proportionally when load changes and PV output power fluctuates,reduce bus voltage error caused by line impedance and differences in rated power of different PV arrays,and improve the performance of PV power generation system applied to space.展开更多
The 6–8 wt%yttria-stabilized zirconia with a tetragonal structure(t’-YSZ)is extensively employed in thermal barrier coatings.The exceptional fracture toughness of t’-YSZ can be attributed to its distinctive ferroel...The 6–8 wt%yttria-stabilized zirconia with a tetragonal structure(t’-YSZ)is extensively employed in thermal barrier coatings.The exceptional fracture toughness of t’-YSZ can be attributed to its distinctive ferroelastic toughening mechanism.Microstructure and interface tension play a critical role in ferroelastic variant switching at the micro-and nano-scale.This paper presents an original thermodynamically consistent phase field(PF)theory for analyzing ferroelastic variant switching at the micro-and nano-scale of t’-YSZ.The theory incorporates strain gradient elasticity using higher-order elastic energy and interface tension tensor via geometric nonlinearity to represent biaxial tension resulting from interface energy.Subsequently,a mixed-type formulation is employed to implement the higher-order theory through the finite element method.For an interface in equilibrium,the effects of strain gradient elasticity result in a more uniform distribution of stresses,whereas the presence of interface tension tensor significantly amplifies the stress magnitude at the interface.The introduction of an interface tension tensor increases the maximum value of stress at the interface by a factor of 4 to 10.The nucleation and evolution of variants at a pre-existing crack tip in a mono-phase t’-YSZ have also been studied.The strain gradient elasticity is capable of capturing the size effect of ferroelastic variant switching associated with microstructures in experiments.Specifically,when the grain size approaches that of the specimen,the critical load required for variant switching at the crack tip increases,resulting in greater dissipation of elastic energy during ferroelastic variant switching.Moreover,the interface tension accelerates the evolution of variants.The presented framework exhibits significant potential in modeling ferroelastic variant switching at the micro-and nano-scale.展开更多
Ferroelectric thin films based on HfO_(2) have garnered increasing attention worldwide,primarily due to their remarkable compatibility with silicon and scalability,in contrast to traditional perovskite-structured ferr...Ferroelectric thin films based on HfO_(2) have garnered increasing attention worldwide,primarily due to their remarkable compatibility with silicon and scalability,in contrast to traditional perovskite-structured ferroelectric materials.Nonetheless,significant challenges remain in their widespread commercial utilization,particularly concerning their notable wake-up effect and limited endurance.To address these challenges,we propose a novel strategy involving the inhomogeneous distribution of Hf/Zr elements within thin films and explore its effects on the ferroelectricity and endurance of Hf_(0.5)Zr_(0.5)O_(2) thin films.Through techniques such as grazing incidence X-ray diffraction,transmission electron microscopy,and piezoresponse force microscopy,we investigated the structural characteristics and domain switching behaviors of these materials.The experimental results indicate that the inhomogeneous distribution of Hf/Zr contributes to improving the frequency stability and endurance while maintaining a large remnant polarization in Hf_(0.5)Zr_(0.5)O_(2) ferroelectric thin films.By adjusting the distribution of Zr/Hf within the Hf_(0.5)Zr_(0.5)O_(2) thin films,significant enhancements in the remnant polarization(2P_(r)>35μC/cm2)and endurance(>109)along with a reduced coercive voltage can be achieved.Additionally,the fabricated ferroelectric thin films also exhibit high dielectric tunability(≥26%)under a low operating voltage of 2.5 V,whether in the wake-up state or not.This study offers a promising approach to optimize both the ferroelectricity and endurance of HfO_(2)-based thin films.展开更多
In this study,tri-rutile type Mg_(0.5)Ti_(0.5)TaO_(4) ceramics were synthesized,where the structure–property relationship,especially the structural configuration and intrinsic dielectric origin of Mg_(0.5)Ti_(0.5)TaO...In this study,tri-rutile type Mg_(0.5)Ti_(0.5)TaO_(4) ceramics were synthesized,where the structure–property relationship,especially the structural configuration and intrinsic dielectric origin of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,and the low-firing characteristics were studied.It is found that the tri-rutile structural type is unambiguously identified through the Rietveld refinement analysis,the selected area electron diffraction(SAED),and the high-resolution transmission electron microscopy(HRTEM)along the[110]zone axis.With the increase in sintering temperature,the densification and uniformity of crystal growth play important roles in regulating the microwave dielectric properties of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics.Intrinsically,theoretical dielectric properties calculated by the far-infrared reflective spectra approached the experimental values,indicating the importance of structural features to dielectric properties.Furthermore,a glass additive with high matching relevance with ceramics has been developed to decrease the high sintering temperature of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,where 2–4 wt%Li_(2)O–MgO–ZnO–B_(2)O_(3)–SiO_(2)(LMZBS)glass frit was adopted to reduce the suitable temperature from 1275 to 1050℃ without significantly deteriorating the microwave dielectric characteristics.Specifically,Mg_(0.5)Ti_(0.5)TaO_(4) ceramics containing 2 wt% glass addition sintered at 1050℃for 4 h possess excellent microwave dielectric properties:dielectric constant(ε_(r))=44.3,quality factor multiplied by resonant frequency(Q×f)=23,820 GHz(f=6.2 GHz),and the temperature coefficient of resonant frequency(τ_(f))=123.2 ppm/℃.展开更多
Failure due to interfacial oxidation is one of the most important factors in the failure of alloy systems at high temperatures.To analyze high-temperature interfacial oxidation in alloys under deformation,we develop a...Failure due to interfacial oxidation is one of the most important factors in the failure of alloy systems at high temperatures.To analyze high-temperature interfacial oxidation in alloys under deformation,we develop a thermodynamically consistent continuum theory of alloy interfacial oxidation process considering diffusion,oxidation,expansion,viscoplasticity,and deformation processes.Balance equations of force,mass,and energy are presented at first,while the coupled constitutive laws and evolution equations are constructed according to energy dissipation inequality.The coupled kinetics reveals a new mechanism whereby deformation affects the oxidation reaction by changing the alloy’s critical oxygen concentration.External tensile loads decrease the critical oxygen concentration and promote oxidation of the alloy.Conversely,external compressive loads increase the critical oxygen concentration and suppress the oxidation of the alloy.Finally,this theory is applied to thermal barrier coatings(TBCs),exhibiting a good consistency with the high-temperature oxidation experiment of TBCs under external loads.The model successfully explains that the experimental phenomenon of external tensile load accelerates the growth of Al_(2)O_(3)-TGO(thermally grown oxides).Besides,external compressive loads slow down the growth of Al_(2)O_(3)-TGO at the interface and lead to internal oxidation of the bond coat.The presented framework has shown great potential for modeling high-temperature interfacial oxidation processes in alloy systems under deformation.展开更多
X-ray pulsar-based navigation is a revolutionary technology which is capable of providing the required navigation information in the solar system. Performing as an important pulsar-based navigation technique, the Sign...X-ray pulsar-based navigation is a revolutionary technology which is capable of providing the required navigation information in the solar system. Performing as an important pulsar-based navigation technique, the Significance Enhancement of Pulse-profile with Orbit-dynamics(SEPO)can estimate orbital elements by using the distortion of pulse profile. Based on the SEPO technique,we propose a grouping bi-chi-squared technique and adopt the observations of Rossi X-ray Timing Explorer(RXTE) to carry out experimental verification. The pulsar timing is refined to determine spin parameters of the Crab pulsar(PSR B0531+21) during the observation periods, and a short-term dynamic model for RXTE satellite is established by considering the effects of diverse perturbations.Experimental results suggest that the position and velocity errors are 16.3 km(3σ) and 13.3 m/s(3σ) with two adjacent observations split by one day(exposure time of 1.5 ks), outperforming those of the POLAR experiment whose results are 19.2 km(3σ) and 432 m/s(3σ). The approach provided is particularly applicable to the estimation of orbital elements via using high-flux observations.展开更多
Perovskite solar cells(PSCs)have exhibited tremendous potential in photovoltaic fields owing to their appreciable performance and simple fabrication.Nevertheless,device performances are still required to be further im...Perovskite solar cells(PSCs)have exhibited tremendous potential in photovoltaic fields owing to their appreciable performance and simple fabrication.Nevertheless,device performances are still required to be further improved before commercial applications.As one-dimensional materials,carbon nanotubes(CNTs)have been utilized to regulate stability and efficiency of PSCs because of their excellent chemical stability,flexibility,as well as tunable optical and electrical characteristics.In this review,we comprehensively summarize various functions of CNTs in PSCs,such as transparent electrodes,hole/electron-transport layers,counter electrodes,perovskite additives,and interlayers.Additionally,applications of CNTs toward the advancement of flexible and semitransparent PSCs are provided.Finally,we preview the challenges and research interests of using CNTs in high-efficiency and stable perovskite devices.展开更多
The metastable polar orthorhombic phase is believed to be the origin of the ferroelectricity of hafnia-based films.The adjustment of stain,oxygen vacancies and dopant during film deposition and the wake-up electric cy...The metastable polar orthorhombic phase is believed to be the origin of the ferroelectricity of hafnia-based films.The adjustment of stain,oxygen vacancies and dopant during film deposition and the wake-up electric cycling are common strategies to induce the ferroelectricity in hafnia.However,none of them could independently render the ferroelectric phase to be the most stable phase from the theoretical calculation results.The exact external conditions to stabilize orthorhombic phase still remain elusive.In this paper,we investigate the effects of the type,distribution,concentration,and charge state characteristics of oxygen vacancies and the uniaxial strain on the crystal’energy,dielectric constant and spontaneous polarization(Ps);In addition,the impact of the applied electric field parallel to the Ps on the crystal’energy is explored by first-principles calculations.It is challenging to independently stabilize the ferroelectric phase of hafnia-based films by a single component owing to the rather strict conditions.Surprisingly,the ferroelectricity can be easily obtained when simultaneously considering the effects of oxygen vacancies,uniaxial strain,and applied electric fields,suggesting the extremely important mechanical-electrical-chemical coupling effects.This work provides an explanation for the typical wake-up phenomenon in hafnia and a guidance for film applications.展开更多
Carbon/carbon composites with higher mechanical strength and better reliability at elevated tempera-tures are urgently needed to satisfy the practical applications requirements.SiC nanowires(SiCNWs)modified C/C(SC-CC)...Carbon/carbon composites with higher mechanical strength and better reliability at elevated tempera-tures are urgently needed to satisfy the practical applications requirements.SiC nanowires(SiCNWs)modified C/C(SC-CC)composites have attracted an abundance of attention for their excellent mechanical performance.To further boost the mechanical strengths of composites and maximize the reinforcing efficiency of SiCNWs,we introduce orthogonally structured graphene nanosheets(OGNs)into SC-CC composites,in which OGNs are grafted on the SiCNWs via chemical vapor deposition(CVD)method,forming SC-G-CC composites.Benefiting from the nano-interface effects,uniform stress distribution,strong SiCNWs/PyC interfacial bonding and elevated stress propagation efficiency in the PyC matrix are achieved,thus SC-G-CC composites accomplish brilliant mechanical properties before and after 1,600℃ heat treatment.As temperature rises to 2,100℃,SiCNWs lose efficacy,whereas OGNs with excellent thermal stability continue to play the nano-interface role in the PyC matrix.Therefore,SC-G-CC com-posites show better mechanical performance after 2,100℃ heat treatment,and the mechanical strength retention rate(MSR)of interlaminar shear strength,out-of-plane and in-plane compressive strength of SC-G-CC composites reach 61.0%,55.7%and 55.3%,respectively.This work proposes an alternative thought for maximizing the potentiality of nanomaterials and edifies the mechanical modification of composites.展开更多
Synthetic Aperture Radar(SAR)has significant applications in terrain mapping,environmental monitoring,disaster investigation and many other fields.Traditional SAR acquires two dimensional(2D)images of the observed sce...Synthetic Aperture Radar(SAR)has significant applications in terrain mapping,environmental monitoring,disaster investigation and many other fields.Traditional SAR acquires two dimensional(2D)images of the observed scenarios,while interferometric SAR(InSAR)can acquire digital surface model(DSM,2.5D images).However,in areas with steep terrain changes or complex infrastructures,there will be severe layover phenomenon,resulting in many targets being difficult to detect and interpret.SAR 3D imaging can solve this problem and significantly enhance the target recognition and 3D modeling capabilities.It has become an important trend in the current development of SAR technology.Currently,SAR 3D imaging techniques mainly utilize multi-incident-angle observations to construct a synthetic aperture in the third dimension,so as to obtain the third dimensional resolution ability.However,dozens of tomographic flights or multi-channel observations are required,leading to long data acquisition cycles or extremely sophisticated radar systems,which restrict its popularization.展开更多
Two-dimensional(2D)materials that combine ferromagnetic,semiconductor,and piezoelectric properties hold significant potential for both fundamental research and spin electronic devices.However,the majority of reported ...Two-dimensional(2D)materials that combine ferromagnetic,semiconductor,and piezoelectric properties hold significant potential for both fundamental research and spin electronic devices.However,the majority of reported 2D ferromagnetic-semiconductor-piezoelectric materials rely on d-electron systems,which limits their practical applications due to a Curie temperature lower than room temperature(RT).Here,we report a high-crystallinity carbon nitride(CCN)material based on sp-electrons using a chemical vapor deposition strategy.CCN exhibits a band gap of 1.8 eV and has been confirmed to possess substantial in-plane and out-of-plane piezoelectricity.Moreover,we acquired clear evidences of ferromagnetic behavior at room temperature.Extensive structural characterizations combined with theoretical calculations reveal that incorporating structural oxygen into the highly ordered heptazine structure causes partial substitution of nitrogen sites,which is primarily responsible for generating room-temperature ferromagnetism and piezoelectricity.As a result,the strain in wrinkles can effectively modulate the domain behavior and piezoelectric potential at room temperature.The addition of RT ferromagnetic-semiconductor-piezoelectric material based on sp-electrons to the family of two-dimensional materials opens up numerous possibilities for novel applications in fundamental research and spin electronic devices.展开更多
Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer.Tumor cells,which are characterized by abnormal glycolysis,exhibit a lower extracellular pH(6.5–7.0)than nor-mal tissues(...Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer.Tumor cells,which are characterized by abnormal glycolysis,exhibit a lower extracellular pH(6.5–7.0)than nor-mal tissues(7.2–7.4),providing a promising target for tumor-specific imaging and therapy.However,most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range.In this study,we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate(CaP)fluorescent probe(termed MACaP9).Unlike traditional CaP-based biomedical nanomaterials,which only work within more acidic organelles,such as endosomes and lysosomes(pH 4.0–6.0),MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually dis-tinguish tumor from normal tissues.The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors,as well as small tumor lesions.展开更多
Digital holographic microscopy(DHM),which combines digital holography with optical microscopy,is a wide field,minimally invasive quantitative phase microscopy(QPM)approach for measuring the 3D shape or the inner struc...Digital holographic microscopy(DHM),which combines digital holography with optical microscopy,is a wide field,minimally invasive quantitative phase microscopy(QPM)approach for measuring the 3D shape or the inner structure of transparent and translucent samples.However,limited by diffraction,the spatial resolution of conventional DHM is relatively low and incompatible with a wide field of view(FOV)owing to the spatial bandwidth product(SBP)limit of the imaging systems.During the past decades,many efforts have been made to enhance the spatial resolution of DHM while preserving a large FOV by trading with unused degrees of freedom.Illumination modulation techniques,such as oblique illumination,structured illumination,and speckle illumination,can enhance the resolution by adding more high-frequency information to the recording system.Resolution enhancement is also achieved by extrapolation of a hologram or by synthesizing a larger hologram by scanning the sample,the camera,or inserting a diffraction grating between the sample and the camera.For on-chip DHM,spatial resolution is achieved using pixel super-resolution techniques.In this paper,we review various resolution enhancement approaches in DHM and discuss the advantages and disadvantages of these approaches.It is our hope that this review will contribute to advancements in DHM and its practical applications in many fields.展开更多
Droplet-based microfluidics enables the generation of uniform microdroplets at picoliter or nanoliter scale with high frequency(∼kHz)under precise control.The droplets can function as bioreactors for versatile chemic...Droplet-based microfluidics enables the generation of uniform microdroplets at picoliter or nanoliter scale with high frequency(∼kHz)under precise control.The droplets can function as bioreactors for versatile chemical/biological study and analysis.Taking advantage of the discrete compartment with a confined volume,(1)isolation and manipulation of a single cell,(2)improvement of in-droplet effective concen-trations,(3)elimination of heterogeneous population effects,(4)diminution of contamination risks can be achieved,making it a powerful tool for rapid,sensitive,and high-throughput detection and analysis of bacteria,even for rare or unculturable strains in conventional methods.This mini-review will focus on the generation and manipulation of micro-droplets and bacteria detection and analysis carried out by droplet-based microfluidics.Finally,applications with high potential of droplet-based bacteria analysis are briefly introduced.Due to the advantages of rapid,sensitive,high throughput,and compatibility with rare and unculturable bacteria in conventional methods,droplet-based microfluidics has tremendous potential of providing novel solutions for biological medicine,microbiological engineering,environmental ecology,etc.展开更多
基金This study is supported by the National Key Research and Development Program of China(No.2022YFB2807405)the Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects(No.QCYRCXM-2022-40)+2 种基金the National Natural Science Foundation of China(Nos.U2341263 and 62371366)Open project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050246)Innovation Capability Support Program of Shaanxi,China(Nos.2023-CX-PT-30 and 2022TD-28).
文摘A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.
基金We thank the National Natural Science Foundation of China(52203217 and 21961160720)the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)for financial support.
文摘The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.
基金supported in part by the National Science Fund for Excellent Young Scholars(No.62222113)in part by the joint Funds of the National Natural Science Foundation of China(No.U22B2015)+1 种基金in part by the stabilization support of National Radar Signal Processing Laboratory(No.KGJ202203)in part by the Fundamental Research Funds for the Central Universities(No.ZDRC2004).
文摘Obtaining precise position of interested emitters passively has wide applications in both civilian and military fields.Different from traditional parameter measurement and direct position determination(DPD)method,recently a new passive localization method based on synthetic aper-ture technique,named synthetic aperture positioning(SAP),has been proposed.The method com-pensates for the nonlinear phase produced by relative motion between the moving platform and the emitter,achieving coherent summation of intercepted signals.The SAP can obtain high-resolution and high-precision localization results at a low signal-to-noise ratio.This paper summarizes the research progress of SAP,including localization principles,spaceborne applications,and application scope analysis.Besides,the possible future outlook of SAP is considered.
基金supported by the National Natural Science Foundation of China(Nos.12104352 and 12204294)Fundamental Research Funds for the Central Universities(Nos.XJS_(2)12208 and 2020BJ-56)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K67)the Natural Science Foundation of Shaanxi Province(Nos.2019JCW-17 and 2020JCW-15).
文摘Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774277 and 62105253)the Science and Technology Program of Xi’an(Grant No.202005YK01)+2 种基金the Natural Science Basic Research Program of Shaanxi,China(Grant No.2019JCW-03)the Natural Science Foundation of Shannxi Province,China(Grant Nos.2022JQ-709 and 2023-JC-YB-485)the Fundamental Research Funds for the Central Universities(Grant No.XJS222206)。
文摘We demonstrate a Kerr-lens mode-locked Yb:Lu YSiO_(5)(Yb:LYSO)laser with the pulse duration of 54 fs,corresponding to a spectral bandwidth of 25 nm centered at 1062 nm.To the best of our knowledge,this is the shortest pulse duration obtained from Yb:LYSO laser.At the repetition rate of 378.3 MHz,an output power of 111.6 m W is obtained using an output coupler with 0.6%transmittance,which can maintain long-time stable mode-locking more than 13 h.
基金supported by the National Natural Science Foundation of China(Grant No.12104352 and 51973170)Fundamental Research Funds for the Central Universities(Grant No.XJS212208 and 2020BJ-56)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K67)the National Natural Science Foundation of Shaanxi Province under Grant No.2019JCW-17 and 2020JCW-15.
文摘The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introducing spin-polarized electrons in single-component photocatalytic materials emerged as a promising approach.However,the decreased redox ability of photocarriers in these materials becomes a new challenge.Herein,we mitigate this challenge with a carbon nitride sheet(CNs)/graphene nanoribbon(GNR)composite material that has a van der Waals heterostructures(vdWHs)and spin-polarized electron properties.Experimental results and theoretical calculations show that the heterostructure has a strong redox ability,high carrier-separation efficiency,and enhanced surface catalytic reaction.Consequently,the mixed-dimensional CNs/GNR vdWHs exhibit remarkable performance for H_(2)and O_(2)generation as well as CO_(2)production under visible-light irradiation without any cocatalyst.The spin-polarized vdWHs discovered in this study revealed a new type of photocatalytic materials and advanced the development of spintronics and photocatalysis.
基金supported by the Civil Aerospace Technology Research Project,China(No.D010103)the National Natural Science Foundation of China(Nos.52022075 and U1937202)the National Key R&D Program of China(No.2021YFB3900300).
文摘In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple independent PV arrays.In each PV array,there are multiple independent PV subarrays.In this paper,a V-P droop control method with adaptive droop coefficient is proposed,which modifies the droop intercept based on the bus voltage deviation and the power per unit value of the PV array.This method ensures the accuracy of bus voltage and achieves proportional distribution of power between PV arrays based on the proposed topology structure in this paper.When the load changes or the output power of the PV array fluctuates,this method can ensure that power is distributed proportionally.The principle and control method of the proposed droop control method is analyzed in this paper.The effectiveness of the method is verified through MATLAB/Simulink simulation and experiment.Simulation and experimental results show that the proposed method can achieve power distributed proportionally when load changes and PV output power fluctuates,reduce bus voltage error caused by line impedance and differences in rated power of different PV arrays,and improve the performance of PV power generation system applied to space.
基金supported by the National Natural Science Foundation of China(Grant Nos.11890684,12032001&51590891)the Technology Innovation Leading Program of Shaanxi(Grant No.2022TD-28)Hunan Provincial Natural Science Innovation Research Group Fund(Grant No.2020JJ1005)。
文摘The 6–8 wt%yttria-stabilized zirconia with a tetragonal structure(t’-YSZ)is extensively employed in thermal barrier coatings.The exceptional fracture toughness of t’-YSZ can be attributed to its distinctive ferroelastic toughening mechanism.Microstructure and interface tension play a critical role in ferroelastic variant switching at the micro-and nano-scale.This paper presents an original thermodynamically consistent phase field(PF)theory for analyzing ferroelastic variant switching at the micro-and nano-scale of t’-YSZ.The theory incorporates strain gradient elasticity using higher-order elastic energy and interface tension tensor via geometric nonlinearity to represent biaxial tension resulting from interface energy.Subsequently,a mixed-type formulation is employed to implement the higher-order theory through the finite element method.For an interface in equilibrium,the effects of strain gradient elasticity result in a more uniform distribution of stresses,whereas the presence of interface tension tensor significantly amplifies the stress magnitude at the interface.The introduction of an interface tension tensor increases the maximum value of stress at the interface by a factor of 4 to 10.The nucleation and evolution of variants at a pre-existing crack tip in a mono-phase t’-YSZ have also been studied.The strain gradient elasticity is capable of capturing the size effect of ferroelastic variant switching associated with microstructures in experiments.Specifically,when the grain size approaches that of the specimen,the critical load required for variant switching at the crack tip increases,resulting in greater dissipation of elastic energy during ferroelastic variant switching.Moreover,the interface tension accelerates the evolution of variants.The presented framework exhibits significant potential in modeling ferroelastic variant switching at the micro-and nano-scale.
基金supported by the National Natural Science Foundation of China(Nos.52122205,52302151,11932016,12302429,and 12202330)the Qin Chuang Yuan Cited High-level Innovation and Entrepreneurship Talent Project(No.QCYRCXM-2023-075)+2 种基金the Fundamental Research Funds for the Central Universities(No.ZYTS24122)the Xidian University Specially Funded Project for Interdisciplinary Exploration(No.TZJH2024054)the Start-up Foundation of Xidian University(No.10251220008).
文摘Ferroelectric thin films based on HfO_(2) have garnered increasing attention worldwide,primarily due to their remarkable compatibility with silicon and scalability,in contrast to traditional perovskite-structured ferroelectric materials.Nonetheless,significant challenges remain in their widespread commercial utilization,particularly concerning their notable wake-up effect and limited endurance.To address these challenges,we propose a novel strategy involving the inhomogeneous distribution of Hf/Zr elements within thin films and explore its effects on the ferroelectricity and endurance of Hf_(0.5)Zr_(0.5)O_(2) thin films.Through techniques such as grazing incidence X-ray diffraction,transmission electron microscopy,and piezoresponse force microscopy,we investigated the structural characteristics and domain switching behaviors of these materials.The experimental results indicate that the inhomogeneous distribution of Hf/Zr contributes to improving the frequency stability and endurance while maintaining a large remnant polarization in Hf_(0.5)Zr_(0.5)O_(2) ferroelectric thin films.By adjusting the distribution of Zr/Hf within the Hf_(0.5)Zr_(0.5)O_(2) thin films,significant enhancements in the remnant polarization(2P_(r)>35μC/cm2)and endurance(>109)along with a reduced coercive voltage can be achieved.Additionally,the fabricated ferroelectric thin films also exhibit high dielectric tunability(≥26%)under a low operating voltage of 2.5 V,whether in the wake-up state or not.This study offers a promising approach to optimize both the ferroelectricity and endurance of HfO_(2)-based thin films.
基金support from the open research fund of Songshan Lake Materials Laboratory (No.2022SLABFN20)the Qinchuangyuan Citing Highlevel Innovation and Entrepreneurship Talent Projects (No.QCYRCXM-2022-40)+3 种基金the Natural Science Basic Research Program of Shaanxi (No.2022JQ-390)the National Natural Science Foundation of China (No.52102123)the National Key R&D Program of China (No.2022YFB2807405)the Natural Science Foundation of Sichuan Province (Nos.22NSFSC1973 and 2022NSFSC1959).
文摘In this study,tri-rutile type Mg_(0.5)Ti_(0.5)TaO_(4) ceramics were synthesized,where the structure–property relationship,especially the structural configuration and intrinsic dielectric origin of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,and the low-firing characteristics were studied.It is found that the tri-rutile structural type is unambiguously identified through the Rietveld refinement analysis,the selected area electron diffraction(SAED),and the high-resolution transmission electron microscopy(HRTEM)along the[110]zone axis.With the increase in sintering temperature,the densification and uniformity of crystal growth play important roles in regulating the microwave dielectric properties of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics.Intrinsically,theoretical dielectric properties calculated by the far-infrared reflective spectra approached the experimental values,indicating the importance of structural features to dielectric properties.Furthermore,a glass additive with high matching relevance with ceramics has been developed to decrease the high sintering temperature of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,where 2–4 wt%Li_(2)O–MgO–ZnO–B_(2)O_(3)–SiO_(2)(LMZBS)glass frit was adopted to reduce the suitable temperature from 1275 to 1050℃ without significantly deteriorating the microwave dielectric characteristics.Specifically,Mg_(0.5)Ti_(0.5)TaO_(4) ceramics containing 2 wt% glass addition sintered at 1050℃for 4 h possess excellent microwave dielectric properties:dielectric constant(ε_(r))=44.3,quality factor multiplied by resonant frequency(Q×f)=23,820 GHz(f=6.2 GHz),and the temperature coefficient of resonant frequency(τ_(f))=123.2 ppm/℃.
基金supported by the National Natural Science Foundation of China(Grant Nos.11890684,12032001,and 51590891)the Technology Innovation Leading Program of Shaanxi(Grant No.2022TD-28)the Hunan Provincial Natural Science Innovation Research Group Fund(Grant No.2020JJ1005)。
文摘Failure due to interfacial oxidation is one of the most important factors in the failure of alloy systems at high temperatures.To analyze high-temperature interfacial oxidation in alloys under deformation,we develop a thermodynamically consistent continuum theory of alloy interfacial oxidation process considering diffusion,oxidation,expansion,viscoplasticity,and deformation processes.Balance equations of force,mass,and energy are presented at first,while the coupled constitutive laws and evolution equations are constructed according to energy dissipation inequality.The coupled kinetics reveals a new mechanism whereby deformation affects the oxidation reaction by changing the alloy’s critical oxygen concentration.External tensile loads decrease the critical oxygen concentration and promote oxidation of the alloy.Conversely,external compressive loads increase the critical oxygen concentration and suppress the oxidation of the alloy.Finally,this theory is applied to thermal barrier coatings(TBCs),exhibiting a good consistency with the high-temperature oxidation experiment of TBCs under external loads.The model successfully explains that the experimental phenomenon of external tensile load accelerates the growth of Al_(2)O_(3)-TGO(thermally grown oxides).Besides,external compressive loads slow down the growth of Al_(2)O_(3)-TGO at the interface and lead to internal oxidation of the bond coat.The presented framework has shown great potential for modeling high-temperature interfacial oxidation processes in alloy systems under deformation.
基金the National Natural Science Foundation of China(No.62103313)the Space Optoelectronic Measurement&Perception Laboratory of BICE,China(No.LabSOMP-2020-06)the Central Universities,China(No.JC2007).
文摘X-ray pulsar-based navigation is a revolutionary technology which is capable of providing the required navigation information in the solar system. Performing as an important pulsar-based navigation technique, the Significance Enhancement of Pulse-profile with Orbit-dynamics(SEPO)can estimate orbital elements by using the distortion of pulse profile. Based on the SEPO technique,we propose a grouping bi-chi-squared technique and adopt the observations of Rossi X-ray Timing Explorer(RXTE) to carry out experimental verification. The pulsar timing is refined to determine spin parameters of the Crab pulsar(PSR B0531+21) during the observation periods, and a short-term dynamic model for RXTE satellite is established by considering the effects of diverse perturbations.Experimental results suggest that the position and velocity errors are 16.3 km(3σ) and 13.3 m/s(3σ) with two adjacent observations split by one day(exposure time of 1.5 ks), outperforming those of the POLAR experiment whose results are 19.2 km(3σ) and 432 m/s(3σ). The approach provided is particularly applicable to the estimation of orbital elements via using high-flux observations.
基金National Natural Science Foundation of China,Grant/Award Numbers:52192610,62274127,62304163National Key Research and Development Program of China,Grant/Award Numbers:2021YFA0715600,2021YFA0717700,2018YFB2202900+2 种基金Natural Science Basic Research Program of Shaanxi,Grant/Award Number:2023-JC-QN-0471Qinchuangyuan Cited High-level Innovation and Entrepreneurship Talent Projects,Grant/Award Number:QCYRCXM-2022-364Fundamental Research Funds for the Central Universities,Grant/Award Number:XJS222210。
文摘Perovskite solar cells(PSCs)have exhibited tremendous potential in photovoltaic fields owing to their appreciable performance and simple fabrication.Nevertheless,device performances are still required to be further improved before commercial applications.As one-dimensional materials,carbon nanotubes(CNTs)have been utilized to regulate stability and efficiency of PSCs because of their excellent chemical stability,flexibility,as well as tunable optical and electrical characteristics.In this review,we comprehensively summarize various functions of CNTs in PSCs,such as transparent electrodes,hole/electron-transport layers,counter electrodes,perovskite additives,and interlayers.Additionally,applications of CNTs toward the advancement of flexible and semitransparent PSCs are provided.Finally,we preview the challenges and research interests of using CNTs in high-efficiency and stable perovskite devices.
基金supported by the National Natural Science Foundation of China(Grant nos.12172093 and 11932016)the Guangdong Basic and Applied Basic Research Foundation(Grant no.2021A1515012607).
文摘The metastable polar orthorhombic phase is believed to be the origin of the ferroelectricity of hafnia-based films.The adjustment of stain,oxygen vacancies and dopant during film deposition and the wake-up electric cycling are common strategies to induce the ferroelectricity in hafnia.However,none of them could independently render the ferroelectric phase to be the most stable phase from the theoretical calculation results.The exact external conditions to stabilize orthorhombic phase still remain elusive.In this paper,we investigate the effects of the type,distribution,concentration,and charge state characteristics of oxygen vacancies and the uniaxial strain on the crystal’energy,dielectric constant and spontaneous polarization(Ps);In addition,the impact of the applied electric field parallel to the Ps on the crystal’energy is explored by first-principles calculations.It is challenging to independently stabilize the ferroelectric phase of hafnia-based films by a single component owing to the rather strict conditions.Surprisingly,the ferroelectricity can be easily obtained when simultaneously considering the effects of oxygen vacancies,uniaxial strain,and applied electric fields,suggesting the extremely important mechanical-electrical-chemical coupling effects.This work provides an explanation for the typical wake-up phenomenon in hafnia and a guidance for film applications.
基金supported by the National Natural Science Foundation of China(Grant No.52222204)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067)+2 种基金the Key R&D Program of Shaanxi Province(Grant Nos.2019ZDLGY04-02 and 2021ZDLGY14-04)Natural Science Basic Research Plan in Shaanxi(2022JC-25)GuangDong Basic and Applied Basic Research Foundation(2022A1515111220).
文摘Carbon/carbon composites with higher mechanical strength and better reliability at elevated tempera-tures are urgently needed to satisfy the practical applications requirements.SiC nanowires(SiCNWs)modified C/C(SC-CC)composites have attracted an abundance of attention for their excellent mechanical performance.To further boost the mechanical strengths of composites and maximize the reinforcing efficiency of SiCNWs,we introduce orthogonally structured graphene nanosheets(OGNs)into SC-CC composites,in which OGNs are grafted on the SiCNWs via chemical vapor deposition(CVD)method,forming SC-G-CC composites.Benefiting from the nano-interface effects,uniform stress distribution,strong SiCNWs/PyC interfacial bonding and elevated stress propagation efficiency in the PyC matrix are achieved,thus SC-G-CC composites accomplish brilliant mechanical properties before and after 1,600℃ heat treatment.As temperature rises to 2,100℃,SiCNWs lose efficacy,whereas OGNs with excellent thermal stability continue to play the nano-interface role in the PyC matrix.Therefore,SC-G-CC com-posites show better mechanical performance after 2,100℃ heat treatment,and the mechanical strength retention rate(MSR)of interlaminar shear strength,out-of-plane and in-plane compressive strength of SC-G-CC composites reach 61.0%,55.7%and 55.3%,respectively.This work proposes an alternative thought for maximizing the potentiality of nanomaterials and edifies the mechanical modification of composites.
文摘Synthetic Aperture Radar(SAR)has significant applications in terrain mapping,environmental monitoring,disaster investigation and many other fields.Traditional SAR acquires two dimensional(2D)images of the observed scenarios,while interferometric SAR(InSAR)can acquire digital surface model(DSM,2.5D images).However,in areas with steep terrain changes or complex infrastructures,there will be severe layover phenomenon,resulting in many targets being difficult to detect and interpret.SAR 3D imaging can solve this problem and significantly enhance the target recognition and 3D modeling capabilities.It has become an important trend in the current development of SAR technology.Currently,SAR 3D imaging techniques mainly utilize multi-incident-angle observations to construct a synthetic aperture in the third dimension,so as to obtain the third dimensional resolution ability.However,dozens of tomographic flights or multi-channel observations are required,leading to long data acquisition cycles or extremely sophisticated radar systems,which restrict its popularization.
基金the National Key R&D Program of China(No.2022ZD0119002)the National Natural Science Foundation of China(Nos.62025402,62090033,91964202,92064003,92264202,62293522,12104352,and 12204294)+3 种基金the Major Program of Zhejiang Natural Science Foundation(No.DT23F0402)the Fundamental Research Funds for the Central Universities(Nos.QTZX23040 and QTZX23079)the China National Postdoctoral Programme for Innovative Talents(No.BX20230281)the Natural Science Basic Research Program of Shaanxi(No.2023JC-XJ-01).
文摘Two-dimensional(2D)materials that combine ferromagnetic,semiconductor,and piezoelectric properties hold significant potential for both fundamental research and spin electronic devices.However,the majority of reported 2D ferromagnetic-semiconductor-piezoelectric materials rely on d-electron systems,which limits their practical applications due to a Curie temperature lower than room temperature(RT).Here,we report a high-crystallinity carbon nitride(CCN)material based on sp-electrons using a chemical vapor deposition strategy.CCN exhibits a band gap of 1.8 eV and has been confirmed to possess substantial in-plane and out-of-plane piezoelectricity.Moreover,we acquired clear evidences of ferromagnetic behavior at room temperature.Extensive structural characterizations combined with theoretical calculations reveal that incorporating structural oxygen into the highly ordered heptazine structure causes partial substitution of nitrogen sites,which is primarily responsible for generating room-temperature ferromagnetism and piezoelectricity.As a result,the strain in wrinkles can effectively modulate the domain behavior and piezoelectric potential at room temperature.The addition of RT ferromagnetic-semiconductor-piezoelectric material based on sp-electrons to the family of two-dimensional materials opens up numerous possibilities for novel applications in fundamental research and spin electronic devices.
基金the National Key Research and Development Program of China(2017YFC1309100,2017YFA0205200,and 2020YFA0211100)National Natural Science Foundation of China(81671753,91959124,21804104,32071406,51922077,and 51872205)+6 种基金China Postdoctoral Science Foundation(2019M650259)the Youth Innovation Team of Shaanxi UniversitiesNatural Science Foundation of Shaanxi Province of China(2020PT-020)the Fundamental Research Funds for the Central Universities(JB211202,and JC2112)the Open Project Program of the State Key Laboratory of Cancer Biology(Fourth Military Medical University)(CBSKL2019ZDKF06)the Foundation of National Facility for Translational Medicine(Shanghai)(TMSK2020-012)Young Talents Program,and Shanghai Municipal Commission of Health and Family Planning Foundation(2017YQ050)。
文摘Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer.Tumor cells,which are characterized by abnormal glycolysis,exhibit a lower extracellular pH(6.5–7.0)than nor-mal tissues(7.2–7.4),providing a promising target for tumor-specific imaging and therapy.However,most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range.In this study,we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate(CaP)fluorescent probe(termed MACaP9).Unlike traditional CaP-based biomedical nanomaterials,which only work within more acidic organelles,such as endosomes and lysosomes(pH 4.0–6.0),MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually dis-tinguish tumor from normal tissues.The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors,as well as small tumor lesions.
基金the National Key Research and Development Program of China(2021YFF0700300)the National Natural Science Foundation of China(NSFC 62075177,62175112)+1 种基金the Natural Science Foundation of Shaanxi Province(2020JM-193 and 2020JQ-324)the Fundamental Research Funds for the Central Universities(XJS210503,XJS210504,JC2112,and JB210513).
文摘Digital holographic microscopy(DHM),which combines digital holography with optical microscopy,is a wide field,minimally invasive quantitative phase microscopy(QPM)approach for measuring the 3D shape or the inner structure of transparent and translucent samples.However,limited by diffraction,the spatial resolution of conventional DHM is relatively low and incompatible with a wide field of view(FOV)owing to the spatial bandwidth product(SBP)limit of the imaging systems.During the past decades,many efforts have been made to enhance the spatial resolution of DHM while preserving a large FOV by trading with unused degrees of freedom.Illumination modulation techniques,such as oblique illumination,structured illumination,and speckle illumination,can enhance the resolution by adding more high-frequency information to the recording system.Resolution enhancement is also achieved by extrapolation of a hologram or by synthesizing a larger hologram by scanning the sample,the camera,or inserting a diffraction grating between the sample and the camera.For on-chip DHM,spatial resolution is achieved using pixel super-resolution techniques.In this paper,we review various resolution enhancement approaches in DHM and discuss the advantages and disadvantages of these approaches.It is our hope that this review will contribute to advancements in DHM and its practical applications in many fields.
基金supported by National Natural Science Foundation of China (No. 22104117)“the Fundamental Research Funds for the Central Universities” (No. JC2110)+1 种基金Wuhu and Xidian University special fund for industry-university-research cooperation (No. XWYCXY-012020012)Open Fund of Zhijiang Lab (No. 2021MC0AB02)
文摘Droplet-based microfluidics enables the generation of uniform microdroplets at picoliter or nanoliter scale with high frequency(∼kHz)under precise control.The droplets can function as bioreactors for versatile chemical/biological study and analysis.Taking advantage of the discrete compartment with a confined volume,(1)isolation and manipulation of a single cell,(2)improvement of in-droplet effective concen-trations,(3)elimination of heterogeneous population effects,(4)diminution of contamination risks can be achieved,making it a powerful tool for rapid,sensitive,and high-throughput detection and analysis of bacteria,even for rare or unculturable strains in conventional methods.This mini-review will focus on the generation and manipulation of micro-droplets and bacteria detection and analysis carried out by droplet-based microfluidics.Finally,applications with high potential of droplet-based bacteria analysis are briefly introduced.Due to the advantages of rapid,sensitive,high throughput,and compatibility with rare and unculturable bacteria in conventional methods,droplet-based microfluidics has tremendous potential of providing novel solutions for biological medicine,microbiological engineering,environmental ecology,etc.