We show the existence of dissipative Hhlder continuous solutions of the Boussi- nesq equations. More precise, for anyβ∈ (0, 1/5), a time interval [0, T] and any given smooth energy profile e : [0, T] → (0, ∞...We show the existence of dissipative Hhlder continuous solutions of the Boussi- nesq equations. More precise, for anyβ∈ (0, 1/5), a time interval [0, T] and any given smooth energy profile e : [0, T] → (0, ∞), there exist a weak solution (v, θ) of the 3d Boussinesq equations such that (v, 8) ∈ Cβ(T3 × [0, T]) with e(t) = ∫T3 |v(x, t)|2dx for all t ∈ [0, T]. This extend the result of [2] about Onsager's conjecture into Boussinesq equation and improve our previous result in [30].展开更多
基金partially supported by the NSFC(11471320 and 11631008)
文摘We show the existence of dissipative Hhlder continuous solutions of the Boussi- nesq equations. More precise, for anyβ∈ (0, 1/5), a time interval [0, T] and any given smooth energy profile e : [0, T] → (0, ∞), there exist a weak solution (v, θ) of the 3d Boussinesq equations such that (v, 8) ∈ Cβ(T3 × [0, T]) with e(t) = ∫T3 |v(x, t)|2dx for all t ∈ [0, T]. This extend the result of [2] about Onsager's conjecture into Boussinesq equation and improve our previous result in [30].