Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorptio...Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.展开更多
基金Supported by the Research Fund for the Doctoral Program of Higher Education(No20050010014)the China Petroleum &Chemical Corporation ( No X503015 )the Key Discipline Construction Foundation of Beijing Education Committee ( NoXK100100643)
文摘Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20% (mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.