期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Zwitterionic glycine modified Fe/Mg-layered double hydroxides for highly selective and efficient removal of oxyanions from polluted water 被引量:5
1
作者 Xiaofeng Shi Chao Wang +7 位作者 Jiaoxia Zhang Li Guo Jing Lin Duo Pan Juying Zhou Jincheng Fan Tao Ding Zhanhu Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第16期8-15,共8页
Zwitterionic glycine was employed to modify Fe/Mg-layered double hydroxides(LDH)to realize an GFe/Mg-LDH adsorbent with high adsorption capacities of oxygen-containing anions including As(Ⅴ),P(Ⅴ)and Cr(Ⅵ).When the ... Zwitterionic glycine was employed to modify Fe/Mg-layered double hydroxides(LDH)to realize an GFe/Mg-LDH adsorbent with high adsorption capacities of oxygen-containing anions including As(Ⅴ),P(Ⅴ)and Cr(Ⅵ).When the Fe/Mg mole ratio was 0.02 mol/0.02 mol,the G-Fe/Mg-LDH has a good adsorption performance.The optimum adsorption pH value of G-Fe/Mg-LDH for oxygen-containing anions was 6.The selectivity of three oxygen-containing anions was Cr(Ⅵ) 展开更多
关键词 GLYCINE Water treatment ARSENIC OXYANIONS Selective adsorptio
原文传递
Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells 被引量:1
2
作者 Jie Yang Jin Lin +3 位作者 Shiqi Sun Xue Li Lei Liu Chao Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第21期75-85,共11页
Due to the designability of their proton transport channels,high-performance long-lasting composite proton exchange membranes(PEMs)are currently the subject of extensive research.However,the compatibility and channel ... Due to the designability of their proton transport channels,high-performance long-lasting composite proton exchange membranes(PEMs)are currently the subject of extensive research.However,the compatibility and channel order of the internal components of the composite membranes are still challenging.In this work,hollow polypyrrole(PPy)nanotube structures were obtained to provide a nitrogen source and to act as a skeleton to confine and separate cobalt nanoparticles on the surface of PPy nanotubes.Finally,zeolitic imidazolate framework material-67(ZIF-67)was attached to the surface.By using this method,PPy@ZIF-67 filler can minimize the particle size and inhibit Co^(2+)ions from aggregating,thus constructing a reasonably distributed transport channel and improving the proton transport capacity.As a result,the synthesized polymer nanotubes loaded metal-organic framework(MOF)nanofiber network can enhance the physicochemical properties and stability of the membrane by providing a more extensive interfacial interaction.In addition,the composite membrane has excellent ionic conductivity and power density,reaching 233.7 mS cm^(–1) and 837 mW cm^(–2) at 80℃ and 100%humidity.It indicates that the nanofibrous MOF structure not only improves the compatibility with the substrate but also provides sufficient leap points for proton transport via the interfacial conduction pathway between the PPy@ZIF-67 filler and the substrate,thus allowing the resulting composite membrane to facilitate proton transfer via the Vehicle and Grotthuss mechanisms synergistically. 展开更多
关键词 Multidimensional structure Composite proton exchange membrane Nanofiber ion channels Fuel cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部