期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Interfacial Morphology and Bonding Mechanism of Explosive Weld Joints 被引量:3
1
作者 Tingting Zhang Wenxian Wang +1 位作者 Zhifeng Yan Jie Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期201-212,共12页
Interfacial structure greatly affects the mechanical properties of laminated plates.However,the critical material properties that impact the interfacial morphology,appearance,and associated bonding mechanism of explos... Interfacial structure greatly affects the mechanical properties of laminated plates.However,the critical material properties that impact the interfacial morphology,appearance,and associated bonding mechanism of explosive welded plates are still unknown.In this paper,the same base plate(AZ31B alloy)and different flyer metals(aluminum alloy,copper,and stainless steel)were used to investigate interfacial morphology and structure.SEM and TEM results showed that typical sine wave,wave-like,and half-wave-like interfaces were found at the bonding interfaces of Al/Mg,Cu/Mg and SS/Mg clad plates,respectively.The different interfacial morphologies were mainly due to the differences in hardness and yield strength between the flyer and base metals.The results of the microstructural distribution at the bonding interface indicated metallurgical bonding,instead of the commonly believed solid-state bonding,in the explosive welded clad plate.In addition,the shear strength of the bonding interface of the explosive welded Al/Mg,Cu/Mg and SS/Mg clad plates can reach up to 201.2 MPa,147.8 MPa,and 128.4 MPa,respectively.The proposed research provides the design basis for laminated composite metal plates fabrication by explosive welding technology. 展开更多
关键词 Interfacial structure Bonding mechanism Explosive welding Metallurgical bonding Magnesium alloy
下载PDF
Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate 被引量:2
2
作者 Tingting Zhang Wenxian Wang +1 位作者 Jie Zhang Zhifeng Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第6期1237-1248,共12页
Interfacial bonding,microstructures,and mechanical properties of an explosively-welded H68/AZ31B clad plate were systematically studied.According to the results,the bonding interface demonstrated a“wavy-like”structu... Interfacial bonding,microstructures,and mechanical properties of an explosively-welded H68/AZ31B clad plate were systematically studied.According to the results,the bonding interface demonstrated a“wavy-like”structure containing three typical zones/layers:(1)diffusion layer adjacent to the H68 brass plate;(2)solidification layer of melted metals at the interface;(3)a layer at the side of AZ31B alloy that experienced severe deformation.Mixed copper,CuZn_(2),andα-Mg phases were observed in the melted-solidification layer.Regular polygonal grains with twins were found at the H68 alloy side,while fine equiaxed grains were found at the AZ31B alloy side near the interface due to recrystallization.Nanoindentation results revealed the formation of brittle intermetallic CuZn_(2) phases at the bonding interface.The interface was bonded well through metallurgical reactions due to diffusion of Cu,Zn,and Mg atoms across the interface and metallurgic reaction of partially melted H68 and AZ31B alloys. 展开更多
关键词 explosive welding interfacial bonding numerical simulation NANOINDENTATION dissimilar metal composite
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部