期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Robust spectral reconstruction algorithm enables quantum dot spectrometers with subnanometer spectral accuracy
1
作者 Wenkai Ma Qian Xue +6 位作者 Yang Yang Hanqiu Zhang Daoli Zhang Xinzheng Lan Liang Gao Jianbing Zhang Jiang Tang 《Advanced Photonics Nexus》 2024年第4期101-109,共9页
Since the concept of computational spectroscopy was introduced,numerous computational spectrometers have emerged.While most of the work focuses on materials,optical structures,and devices,little attention is paid to t... Since the concept of computational spectroscopy was introduced,numerous computational spectrometers have emerged.While most of the work focuses on materials,optical structures,and devices,little attention is paid to the reconstruction algorithm,thus resulting in a common issue:the effectiveness of spectral reconstruction is limited under high-level noise originating from the data acquisition process.Here,we fabricate a computational spectrometer based on a quantum dot(QD)filter array and propose what we believe is a novel algorithm,TKVA(algorithm with Tikhonov and total variation regularization,and the alternating direction method of multipliers),to suppress the impact of noise on spectral recovery.Surprisingly,the new TKVA algorithm gives rise to another advantage,i.e.,the spectral accuracy can be enhanced through interpolation of the precalibration data,providing a convenient solution for performance improvement.In addition,the accuracy of spectral recovery is also enhanced via the interpolation,highlighting its superiority in spectral reconstruction.As a result,the QD spectrometer using the TKVA algorithm shows supreme spectral recovery accuracy compared to the traditional algorithms for complex and broad spectra,a spectral accuracy as low as 0.1 nm,and a spectral resolution of 2 nm in the range of 400 to 800 nm.The new reconstruction algorithm can be applied in various computational spectrometers,facilitating the development of this kind of equipment. 展开更多
关键词 microspectrometer quantum dots REGULARIZATION compressive sensing
下载PDF
Estimation of Three-Dimensional Volumetric Errors of Numerically Controlled Machine Tools by a Tracking Interferometer 被引量:4
2
作者 Soichi Ibaraki Kunitaka Takeuchi +3 位作者 Tomoaki Yano Toshiyuki Takatsuji Sonko Osawa Osamu Sato 《Journal of Mechanics Engineering and Automation》 2011年第4期313-319,共7页
This paper presents the estimation of three-dimensional volumetric errors of a machining center by using a tracking interferometer. A tracking interferometer is a laser interferometer with the mechanism to steer the l... This paper presents the estimation of three-dimensional volumetric errors of a machining center by using a tracking interferometer. A tracking interferometer is a laser interferometer with the mechanism to steer the laser direction to follow a target retroreflector. Based on the triangulation principle, the three-dimensional position of the target can be estimated from measured laser displacements. Its capability to measure three-dimensional positioning errors for arbitrary trajectories is important for the indirect measurement of the machine's kinematic model. This paper presents experimental investigation of the estimation accuracy of the multilateration-based measurement by a tracking interferometer. A tracking interferometer developed by a part of the authors is used in experiments. In the present experiment, the measured volume of target positions was 100 mm × 100 mm × 100 mm. The estimation accuracy of targets within this volume was not sufficiently high compared to the positioning error of the measured machine tool. The results of the experiment and simulation show that the estimation uncertainty is dependent on tracking interferometer locations relative to target locations. Error sensitivity analysis shows that wider distribution of tracker positions in XY improves the estimation accuracy. 展开更多
关键词 Tracking interferometer laser tracker volumetric errors multilateration machine tools estimation accuracy.
下载PDF
Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility 被引量:1
3
作者 MariaPortia B.Nagata Junki Egashira +7 位作者 Naoto Katafuchi Kenji Endo Kazuko Ogata Kenichi Yamanaka Tadayuki Yamanouchi Hideo Matsuda Yutaka Hashiyada Kenichi Yamashita 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2020年第1期44-57,共14页
Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations an... Background:The application of cryopreservation and artificial insemination technology have contributed to the advancement of animal reproduction.However,a substantial proportion of spermatozoa undergoes alterations and loses their fertility during cryopreservation,rendering the frozen-thawed semen impractical for routine use.Cryopreservation is known to reduce sperm lifespan and fertility.Variation in cryosurvival of spermatozoa from different sires and even with the individual sire is common in artificial insemination(AI)centers.Our goal is to improve post-thawed semen quality by optimization of cryopreservation technique through sperm selection prior to cryopreservation process.Results:Our strategy of sperm selection based on rheotaxis and thermotaxis(SSRT)on macrosale in a rotating fluid flow demonstrated the ability to maintain the original pre-freezing structural integrity,viability and biological function related to fertilization competence.This strategy has a positive effect on the cryosurvival and fertilizing abilities of spermatozoa as supported by the improvement on pregnancy rate of Japanese Black heifers and Holstein repeat breeders.This technique protected further sublethal damage to bovine spermatozoa(higher%cryosurvival than the control)and resulted in the improvement of DNA integrity.Prefreeze selected spermatozoa demonstrated slower and controlled capacitation than unprocessed control which is thought to be related to sperm longevity and consequently to appropriate timing during in vivo fertilization.Conclusions:These results provide solid evidence that improvement of post-thawed semen quality by SSRT method is beneficial in terms of cryosurvival,longevity of post-thawed sperm,and optimization of in vivo fertilization,embryo development and calving as supported by the favorable results of field fertility study. 展开更多
关键词 CRYOPRESERVATION FERTILITY Livestock RHEOTAXIS SPERMATOZOA THERMOTAXIS
下载PDF
Kinetic Study of Resin-Curing on Carbon Fiber/Epoxy Resin Composites by Microwave Irradiation 被引量:1
4
作者 Daisuke Shimamoto Yusuke Imai, Yuji Hotta 《Open Journal of Composite Materials》 2014年第2期85-96,共12页
Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin... Microwave processing has great potential for improving composite manufacturing such as reduction of curing time, energy requirements and operational costs. In this paper, the effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite that was composed of discontinuous carbon fibers of 130 μm or 3 mm were investigated. The mechanical properties of carbon fiber/epoxy resin composite cured by microwave irradiation for 20 min at 120°C were similar to ones of the sample prepared by conventional oven for 180 min at 120°C. Microwavecured carbon fiber/epoxy resin composite had higher glass transition temperature than the one prepared by conventional oven. The relation between curing time and flexural modulus indicated that the curing velocity of microwave-irradiated carbon fiber/epoxy resin composite was 9 times faster than the one prepared by conventional oven. Furthermore, activation energies for resincuring reaction on microwave and conventional-cured carbon fiber/epoxy resin composite were estimated. The resin-curing reaction in carbon fiber/epoxy resin composite was promoted by microwave irradiation. 展开更多
关键词 Activation Energy Resin-Curing Microwave IRRADIATION EPOXY RESIN Carbon Fiber
下载PDF
Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors 被引量:2
5
作者 Lei Zhao Shirong Sun +7 位作者 Jinxin Lin Lei Zhong Liheng Chen Jing Guo Jian Yin Husam N.Alshareef Xueqing Qiu Wenli Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期248-265,共18页
Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons... Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1). 展开更多
关键词 Defect HETEROATOM Active sites SUPRAMOLECULE Potassium-ion hybrid capacitors
下载PDF
High-Resolution Mass Spectroscopy for Revealing the Charge Storage Mechanism in Batteries: Oxamide Materials as an Example
6
作者 Chenyang Zhang Yuan Chen +7 位作者 Kun Fan Guoqun Zhang Jincheng Zou Huichao Dai Yanbo Gao Xiaobo Wang Minglei Mao Chengliang Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期195-202,共8页
The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challengi... The pursuit of high-performance electrode materials is highly desired to meet the demand of batteries with high energy and power density.However,a deep understanding of the charge storage mechanism is always challenging,which limits the development of advanced electrode materials.Herein,high-resolution mass spectroscopy(HR-MS)is employed to detect the evolution of organic electrode materials during the redox process and reveal the charge storage mechanism,by using small molecular oxamides as an example,which have ortho-carbonyls and are therefore potential electrochemical active materials for batteries.The HR-MS results adequately proved that the oxamides could reversibly store lithium ions in the voltage window of 1.5–3.8 V.Upon deeper reduction,the oxamides would decompose due to the cleavage of the C–N bonds in oxamide structures,which could be proved by the fragments detected by HR-MS,^(1)H NMR,and the generation of NH_(3)after the reduction of oxamide by Li.This work provides a strategy to deeply understand the charge storage mechanism of organic electrode materials and will stimulate the further development of characterization techniques to reveal the charge storage mechanism for developing high-performance electrode materials. 展开更多
关键词 charge storage mechanism high-resolution mass spectroscopy organic batteries organic electrodes oxamides
下载PDF
Cell Proliferation Ability of Mouse Fibroblast-Like Cells and Osteoblast-Like Cells on a Ti-6Al-4V Alloy Film Produced by Selective Laser Melting
7
作者 Mayu Kawase Tatsuhide Hayashi +7 位作者 Masaki Asakura Akimichi Mieki Hironari Fuyamada Masahiro Sassa Shizuka Nakano Masashi Hagiwara Toru Shimizu Tatsushi Kawai 《Materials Sciences and Applications》 2014年第7期475-483,共9页
Successful regeneration of tissues and organs relies on the application of suitable substrates or scaffolds in scaffold-based regenerative medicine. In this study, Ti-6Al-4V alloy films (Ti alloy film) were produced u... Successful regeneration of tissues and organs relies on the application of suitable substrates or scaffolds in scaffold-based regenerative medicine. In this study, Ti-6Al-4V alloy films (Ti alloy film) were produced using a three-dimensional printing technique called Selective Laser Melting (SLM), which is one of the metal additive manufacturing techniques. The thickness of produced Ti alloy film was approximately 250 μm. The laser-irradiated surface of Ti alloy film had a relatively smooth yet porous surface. The non-irradiated surface was also porous but also retained a lot of partially melted Ti-6Al-4V powder. Cell proliferation ability of mouse fibroblast-like cells (L929 cells) and mouse osteoblast-like cells (MC3T3-E1 cells) on both the surfaces of Ti alloy film was examined using WST assay. Both L929 and MC3T3-E1 cells underwent cell proliferation during the culture period. These results indicate that selective laser melting is suitable for producing a cell-compatible Ti-6Al-4V alloy film for biomaterials applications. 展开更多
关键词 Selective Laser Melting (SLM) TI-6AL-4V Film MOUSE Fibroblast-Like CELL MOUSE Osteoblast-Like CELL CELL Compatibility
下载PDF
Stable PbS colloidal quantum dot inks enable blade‑coating infrared solar cells
8
作者 Xinzhao Zhao Mingyu Li +6 位作者 Tianjun Ma Jun Yan Gomaa Mohamed Gomaa Khalaf Chao Chen Hsien‑Yi Hsu Haisheng Song Jiang Tang 《Frontiers of Optoelectronics》 EI CSCD 2023年第3期131-140,共10页
Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.P... Infrared solar cells are more efective than normal bandgap solar cells at reducing the spectral loss in the near-infrared region,thus also at broadening the absorption spectra and improving power conversion efciency.PbS colloidal quantum dots(QDs)with tunable bandgap are ideal infrared photovoltaic materials.However,QD solar cell production sufers from small-areabased spin-coating fabrication methods and unstable QD ink.Herein,the QD ink stability mechanism was fully investigated according to Lewis acid–base theory and colloid stability theory.We further studied a mixed solvent system using dimethylformamide and butylamine,compatible with the scalable manufacture of method-blade coating.Based on the ink system,100 cm2 of uniform and dense near-infrared PbS QDs(~0.96 eV)flm was successfully prepared by blade coating.The average efciencies of above absorber-based devices reached 11.14%under AM1.5G illumination,and the 800 nm-fltered efciency achieved 4.28%.Both were the top values among blade coating method based devices.The newly developed ink showed excellent stability,and the device performance based on the ink stored for 7 h was similar to that of fresh ink.The matched solvent system for stable PbS QD ink represents a crucial step toward large area blade coating photoelectric devices. 展开更多
关键词 PbS quantum dots Solvent engineering Colloid stability Blade coating Infrared solar cells
原文传递
Heterogeneous system synthesis of high quality PbS quantum dots for efficient infrared solar cells
9
作者 Bo Wang Mingyu Li +6 位作者 Yuxuan Liu Xinyi Liang Yang Yang Xinzheng Lan Liang Gao Jianbing Zhang Jiang Tang 《Nano Research》 SCIE EI CSCD 2023年第4期5750-5755,共6页
As promising optoelectronic materials,lead sulfide quantum dots(PbS QDs)have attracted great attention.However,their applications are substantially limited by the QD quality and/or complicated synthesis.Herein,a facil... As promising optoelectronic materials,lead sulfide quantum dots(PbS QDs)have attracted great attention.However,their applications are substantially limited by the QD quality and/or complicated synthesis.Herein,a facile new synthesis is developed for highly monodisperse and halide passivated PbS QDs.The new synthesis is based on a heterogeneous system containing a PbCl_(2)-Pb(OA)_(2)solid-liquid precursor solution.The solid PbCl_(2)inhibits the diffusion of monomers and maintains a high oversaturation condition for the growth of PbS QDs,resulting in high monodispersities.In addition,the PbCl_(2)gives rise to halide passivation on the PbS QDs,showing excellent stability in air.The high monodispersity and good passivation endow these PbS QDs with outstanding optoelectronic properties,demonstrated by a 9.43%power conversion efficiency of PbS QD solar cells with a bandgap of~0.95 eV(1,300 nm).We believe that this heterogeneous strategy opens up a new avenue optimizing for the synthesis and applications of QDs. 展开更多
关键词 heterogeneous system synthesis lead sulfide quantum dots high monodispersities halide passivation infrared solar cells
原文传递
用于PPG信号测试的大面积柔性胶体量子点红外光电二极管
10
作者 梁心怡 刘宇轩 +13 位作者 刘沛林 杨骏睿 刘婧 杨扬 汪波 胡军 张琳祥 杨高元 鲁帅成 梁桂杰 蓝新正 张建兵 高亮 唐江 《Science Bulletin》 SCIE EI CAS CSCD 2023年第7期698-705,共8页
以铟镓砷、碲镉汞等外延生长的单晶材料作为吸光层的光电二极管是红外探测技术的主流方案.然而,它们的刚性结构、极高成本以及有限尺寸使其无法满足诸如人体内外环境监测,便携式医疗等智能穿戴应用的需求.基于低温液相工艺的胶体量子点(... 以铟镓砷、碲镉汞等外延生长的单晶材料作为吸光层的光电二极管是红外探测技术的主流方案.然而,它们的刚性结构、极高成本以及有限尺寸使其无法满足诸如人体内外环境监测,便携式医疗等智能穿戴应用的需求.基于低温液相工艺的胶体量子点(CQDs)红外光电二极管是实现大面积柔性红外光电探测器极具竞争力的候选方案,但由于其发展年限较短,仍存在暗电流密度大、均匀性差以及工作稳定性差等问题.本文通过在CQDs墨水中引入聚酰亚胺来制备CQDs光电二极管.这种聚合物配体既实现了对CQDs表面缺陷态的钝化,又能够保持胶体墨水的单分散性和持久性.这两点使得光电探测器的吸光层形貌得以改善,同时暗电流密度显著降低,极大地优化了CQDs光电二极管的均匀性和工作稳定性.采用该方案制备的大面积柔性CQDs光电二极管能够实现高于10^(13)Jones的比探测率,可在环境光下实现可穿戴式光电体积描记(PPG)心率信号监测,极大地降低了成本和功耗. 展开更多
关键词 Colloidal quantum dots LARGE-AREA FLEXIBLE Infrared photodiode Photoplethysmogram
原文传递
Efficient quantum dot infrared solar cells with enhanced lowenergy photon conversion via optical engineering
11
作者 Sisi Liu Ming-Yu Li +6 位作者 Kao Xiong Jianbo Gao Xinzheng Lan Daoli Zhang Liang Gao Jianbing Zhang Jiang Tang 《Nano Research》 SCIE EI CSCD 2023年第2期2392-2398,共7页
Infrared(IR)solar cells are promising devices for improving the power conversion efficiency(PCE)of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range.IR solar ... Infrared(IR)solar cells are promising devices for improving the power conversion efficiency(PCE)of conventional solar cells by expanding the utilization region of the sunlight spectrum to near-infrared range.IR solar cells based on colloidal quantum dots(QDs)have attracted extensive attention due to the widely tunable absorption spectrum controlled by dot size and the unique solution processibility.However,the trade-off in QD solar cells between light absorption and photo-generated carrier collection has limited the further improvement of PCE.Here,we present high-performance PbS QD IR solar cells resulting from the combination of boosted light absorption and optimized carrier extraction.By constructing an optical resonance cavity,the light absorption is significantly enhanced in the range of 1,150–1,300 nm at a relatively thin photoactive layer.Meanwhile,the thin photoactive layer facilitates efficient carrier extraction.Consequently,the PbS QD IR solar cells exhibit a highly efficient photoelectric conversion in the IR region,resulting in a high IR PCE of 1.3%which is comparable to the highest value of solution-processed IR solar cells based on PbSe QDs.These results demonstrate that constructing an optical resonance cavity is a reasonable strategy for effective conversion of photons in the devices aiming at light in a relatively narrow wavelength range,such as IR solar cells and narrow band photodetectors. 展开更多
关键词 infrared solar cells PbS quantum dots optical resonance carrier extraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部