期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
High Temperature Mechanical Properties of Ni-Al-Cr Based Alloys for Advanced Die-Materials Applications
1
作者 W.Y.Kim H.S.Kim +1 位作者 Y.G.Yoo I.D.Yeo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期305-308,共4页
In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstruc... In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstructures and mechanical properties of Ni3Al based intermetallic alloys produced by vacuum arc melting were investigated in terms of phase analysis by using a scanning electron microscope (SEM) equipped with an X-ray energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD) and tensile test. The duplex microstructural feature consisting of γ' matrix phase and small intermetallic dispersoids was observed to be distributed over the whole microstructure. The ultimate tensile strength of the present alloy was superior to commercial iron-based and Ni-based die-materials especially in the high temperature region. 展开更多
关键词 INTERMETALLIC Die material Alloying effect Mechanical property
下载PDF
In-situ electrochemical functionalization of carbon materials for high-performance Li–O2 batteries
2
作者 Jungwon Kang Jin Min Kim +4 位作者 Do Youb Kim Jungdon Suk Jaekook Kim Dong Wook Kim Yongku Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期7-13,I0001,共8页
The development of effective synthetic routes is important to manifest proper nature of specific materials.In-situ electrochemical functionalization possesses great advantages over conventional routes,especially facil... The development of effective synthetic routes is important to manifest proper nature of specific materials.In-situ electrochemical functionalization possesses great advantages over conventional routes,especially facile way and leading to reaching elaborate sites of functional group.Here,we demonstrate the preparation of functionalized carbons by in-situ electrochemical reduction in an argon atmosphere for application in low-cost,environmentally benign,and high-performance oxygen-electrodes for non-aqueous Li-O2 batteries.A Li-O2 battery with functionalized carbon shows a high discharge capacity(100 times that of pristine carbon),high power and cycling stability.The outstanding performance is attributed to the high O2 affinity of the functionalized carbon surface that facilitates the formation of soluble and diffusible superoxide intermediates by the reduction of the remaining O2 competing with surface growth for Li2O2 formation. 展开更多
关键词 Lithium-oxygen battery High areal capacity Functionalization of carbon ELECTROCHEMISTRY
下载PDF
Dual-Ion Co-Regulation System Enabling High-Performance Electrochemical Artificial Yarn Muscles with Energy-Free Catch States 被引量:1
3
作者 Ming Ren Lizhong Dong +11 位作者 Xiaobo Wang Yuxin Li Yueran Zhao Bo Cui Guang Yang Wei Li Xiaojie Yuan Tao Zhou Panpan Xu Xiaona Wang Jiangtao Di Qingwen Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期15-27,共13页
Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions an... Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient “rocking-chair” ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, PF_6~- ions react with carbon nanotube yarn, while Li~+ ions react with an Al foil. The intercalation reaction between PF_6~- and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of “rocking-chair” type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of “rocking-chair” type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics. 展开更多
关键词 Artificial muscles Carbon nanotube yarns Electrochemical actuators Catch state Dual-ion co-regulation
下载PDF
Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption 被引量:2
4
作者 Cao Wu Jing Wang +14 位作者 Xiaohang Zhang Lixing Kang Xun Cao Yongyi Zhang Yutao Niu Yingying Yu Huili Fu Zongjie Shen Kunjie Wu Zhenzhong Yong Jingyun Zou Bin Wang Zhou Chen Zhengpeng Yang Qingwen Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期144-160,共17页
In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which c... In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications. 展开更多
关键词 Gradient structures Carbon nanospheres Electromagnetic wave absorption Impedance matching
下载PDF
Efficient thermal management and all-season energy harvesting using adaptive radiative cooling and a thermoelectric power generator
5
作者 Chanil Park Woohwa Lee +4 位作者 Choyeon Park Sungmin Park Jaeho Lee Yong Seok Kim Youngjae Yoo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期496-501,共6页
Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under d... Passive daytime radiative cooling(PDRC) is useful for thermal management because it allows an object to emit terrestrial heat into space without the use of additional energy.To produce sub-ambient temperatures under direct sunlight,PDRC materials are designed to reduce their absorption of solar energy and to enhance their long-wavelength infrared(LWIR) emissivity.In recent years,many photonic structures and polymer composites have been studied to improve the cooling system of buildings.However,in cold weather(i.e. during winter in cold climates),buildings need to be kept warm rather than cooled due to heat loss.To overcome this limitation,temperature-responsive radiative cooling is a promising alternative.In the present study,adaptive radiative cooling(ARC) film fabricated from a polydimethylsiloxane/hollow SiO_(2) microsphere/thermochromic pigment composite was investigated.We found that the ARC film absorbed solar radiation under cold conditions while exhibiting radiative cooling at ambient temperatures above 40℃.Thus,in outdoor experiments,the ARC film achieved sub-ambient temperatures and had a theoretical cooling power of 63.2 W/m~2 in hot weather.We also demonstrated that radiative cooling with an energy harvesting system could be used to improve the energy management of buildings,with the thermoelectric module continuously generating output power using the ARC film.Therefore,we believe that our proposed ARC film can be employed for efficient thermal management of buildings and all-season energy harvesting in the near future. 展开更多
关键词 Thermal management Daytime radiative cooling Temperature-adaptive film Thermoelectric device Energy harvesting
下载PDF
Micro/nano-wrinkled elastomeric electrodes enabling high energy storage performance and various form factors
6
作者 Changeun Yoo Seokmin Lee +4 位作者 Yongkwon Song Woojae Chang Moon Kyu Park Younji Ko Jinhan Cho 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期137-152,共16页
Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer f... Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)). 展开更多
关键词 elastomeric electrodes ELECTRODEPOSITION micro/nano-wrinkled structures
下载PDF
Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach
7
作者 Adewale Oluwaseun Fadaka Taiwo Akinsoji +5 位作者 Ashwil Klein Abram Madimabe Madiehe Mervin Meyer Marshall Keyster Lucky Mashudu Sikhwivhilu Nicole Remaliah Samantha Sibuyi 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第11期1235-1251,共17页
Colorectal cancer(CRC)is among the leading causes of cancer mortality.The lifetime risk of developing CRC is about 5%in adult males and females.CRC is usually diagnosed at an advanced stage,and at this point therapy h... Colorectal cancer(CRC)is among the leading causes of cancer mortality.The lifetime risk of developing CRC is about 5%in adult males and females.CRC is usually diagnosed at an advanced stage,and at this point therapy has a limited impact on cure rates and long-term survival.Novel and/or improved CRC therapeutic options are needed.The involvement of microRNAs(miRNAs)in cancer development has been reported,and their regulation in many oncogenic pathways suggests their potent tumor suppressor action.Although miRNAs provide a promising therapeutic approach for cancer,challenges such as biodegradation,specificity,stability and toxicity,impede their progression into clinical trials.Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy.The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease. 展开更多
关键词 Colorectal cancer MICRORNA NANOTECHNOLOGY NANOCARRIERS OncomiRs TSmiRs
下载PDF
A356/SiC_P与列车实用中的有机闸片的滑动摩擦磨损特性 被引量:7
8
作者 金云学 Jung-Moo Lee Suk-Bong Kang 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第11期1956-1960,共5页
以铝基复合材料作为列车制动盘材料的实用化为目的,选用A356/SIC 20%(体积分数,下同)复合材料和AISI D2工具钢为摩擦材料,以中速列车实用中的有机闸片为对偶材料,进行对比干摩擦磨损试验,并分析比较了磨损特性。结果表明:铝... 以铝基复合材料作为列车制动盘材料的实用化为目的,选用A356/SIC 20%(体积分数,下同)复合材料和AISI D2工具钢为摩擦材料,以中速列车实用中的有机闸片为对偶材料,进行对比干摩擦磨损试验,并分析比较了磨损特性。结果表明:铝基复合材料在小于200Y(3.98MPa)的低载荷下,只存在轻微的氧化磨损,耐磨性比实用中的铁合金材料更好;而超过该载荷时。开始发生磨削磨损,磨损量逐步超过铁合金材料,当载荷达到400N(7.96MPa)时,由于严重的磨削磨损,磨损量剧增。而铁合金材料则随载荷和滑动速度增加,磨损率缓慢增加;磨损过程中的复合材料的摩擦系数平均值与载荷、滑动速度无关,始终保持0.3~0.4,同时随磨损距离的波动也非常小,而工具钢的摩擦系数平均值则对试验参数的敏感度相对大些,且摩擦系数平均值也比复合材料略小,即摩擦系数方面复合材料具有更好的特性。 展开更多
关键词 列车 制动盘 铝基复合材料 摩擦磨损
下载PDF
热处理工艺对A356/SiCp性能及干滑动摩擦磨损特性的影响 被引量:6
9
作者 金云学 LEE Jung-moo KANG Suk-bong 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第8期1458-1465,共8页
研究分析热处理工艺对A356/SiCp复合材料的硬度、导电率及微观组织的影响,在此基础上研究复合材料的干滑动摩擦磨损特性。结果表明:固溶和T6热处理可显著提高复合材料的硬度,但降低导电率,而低温退火却比较显著地提高导电率;导电率高的... 研究分析热处理工艺对A356/SiCp复合材料的硬度、导电率及微观组织的影响,在此基础上研究复合材料的干滑动摩擦磨损特性。结果表明:固溶和T6热处理可显著提高复合材料的硬度,但降低导电率,而低温退火却比较显著地提高导电率;导电率高的低温退火态磨损特性基本与铸态一致,固溶处理及时效处理虽可有效提高硬度,但不提高耐磨性能,这表明T6热处理是否作为制动盘材料时的最佳热处理工艺,有待进一步研究;复合材料的磨损率随载荷的增加而增加,但低载荷时增加缓慢,高载荷时增加迅速;摩擦因数随着热处理工艺而变化,但对载荷变化不敏感,都在较小的范围内波动,基本是稳定的。 展开更多
关键词 AL/SICP 复合材料 干摩擦 热处理 摩擦磨损特性
下载PDF
铸态铝基复合材料与半金属衬片摩擦副的干滑动摩擦磨损特性研究 被引量:2
10
作者 金云学 Jung-Moo Lee Suk-Bong Kang 《摩擦学学报》 EI CAS CSCD 北大核心 2008年第3期266-271,共6页
采用铸态A356/SiC复合材料与高速列车制动盘偶件半金属衬片材料摩擦副进行干摩擦磨损试验,并用扫描电子显微镜、X射线衍射仪和能谱仪等手段分析了复合材料的磨损机制.结果表明:复合材料表现出良好的磨损特性,在滑动速度3.0m/s以下,载荷... 采用铸态A356/SiC复合材料与高速列车制动盘偶件半金属衬片材料摩擦副进行干摩擦磨损试验,并用扫描电子显微镜、X射线衍射仪和能谱仪等手段分析了复合材料的磨损机制.结果表明:复合材料表现出良好的磨损特性,在滑动速度3.0m/s以下,载荷达到600N(12MPa)时的磨损量仍很小;复合材料的磨损率随pv(压力与速度的积)值的增加而增大,摩擦系数则随pv值增加而小幅度减少;磨损过程中磨损表面很快形成以氧化物和以石墨为主的润滑膜,起到了减摩和耐磨作用.在pv值较低时复合材料的磨损机制为轻微的氧化磨损机制,随着pv值增加出现剥层磨损,在复合材料与半金属衬片间的接触表面,由于塑性流动挤出片状磨屑而使磨损量降低. 展开更多
关键词 复合材料 半金属衬片 干摩擦 摩擦磨损性能
下载PDF
Behavior of CaO and Calcium in pure Magnesium 被引量:7
11
作者 HA Seong-Ho LEE Jin-Kyu +2 位作者 JO Hyung-Ho JUNG Seung-Boo KIM Shae K. 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期150-154,共5页
Mg alloys exhibit a number of good properties such as low density, good castability and high specific strength. However, molten Mg and Mg alloys are ignited without the melt protective gases during melting and casting... Mg alloys exhibit a number of good properties such as low density, good castability and high specific strength. However, molten Mg and Mg alloys are ignited without the melt protective gases during melting and casting process due to their high reactivity. The purpose of this study is to investigate effects of Ca and CaO on pure Mg through microstructure observation, ignition test and phase analysis. With increasing Ca and CaO contents, the ignition resistance of Ca or CaO added pure Mg is increased and the grains are refined. As results of XRD and EDS, CaO is reduced to Ca in CaO added pure Mg. Mg2Ca phase is formed even in 0.1 wt.%CaO added pure Mg by reduction mechanism, while Mg2Ca phase is formed over 1.35 wt.% Ca added pure Mg. 展开更多
关键词 Mg CAO IGNITION RESISTANCE Mg2Ca PHASE
下载PDF
2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural:Catalysts,processes and reaction mechanism 被引量:9
12
作者 Chunlin Chen Lingchen Wang +4 位作者 Bin Zhu Zhenqiang Zhou Soliman I.El-Hout Jie Yang Jian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期528-554,共27页
Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce man... Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce many useful organic chemicals by oxidation,hydrogenation,polymerization,and ring-opening reactions.Among all derivatives,the oxidation product 2,5-furandicarboxylic acid(FDCA)is a promising alternative to petroleum-based terephthalic acid for the synthesis of biodegradable plastics.This review analytically discusses the recent progress in the thermocatalytic,electrocatalytic,and photocatalytic oxidation of HMF into FDCA,including catalyst screening,synthesis processes,and reaction mechanism.Rapid fundamental advances may be possible in non-precious metal and metal-free catalysts that are highly efficient under the base-free conditions,and external field-assisted processes like electrochemical or photoelectrochemical cells. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL 2 5-Furandicarboxylic acid Catalytic oxidation Mechanism
下载PDF
Microstructure and texture evolution of Ti-Nb-Si based alloys for biomedical applications 被引量:3
13
作者 KIM Won-Yong KIM Han-Sol 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期163-167,共5页
Microstructure and texture of Ti-Nb-Si based alloys, prepared by water quenching from β-phase field, cold rolling and recrystallization heat treatment followed by water quenching, were investigated in terms of optica... Microstructure and texture of Ti-Nb-Si based alloys, prepared by water quenching from β-phase field, cold rolling and recrystallization heat treatment followed by water quenching, were investigated in terms of optical microstructure and analysis of X-ray pole figure result. In as-quenched sample, relatively random distribution of pole figure was detected without showing a specific texture component. In as-cold rolled sample, however, it is found well-developed several texture components consisting of rotated cube, α-fiber and γ-fiber texture components which are frequently observed in bcc-structured metals and alloys were found. Therefore, texture components developed in the present alloys are closely related to the deformation of β-phase even though small amount of α″ phase co-exist in the microstructure. In recrystallized sample, α-fiber texture component is weakly detected while the other texture components, rotated cube and γ-fiber components, appears to be relatively unchanged. No additional texture components were detected besides those texture components observed in the cold rolled samples. 展开更多
关键词 Ti-Nb-Si BASED ALLOYS MICROSTRUCTURE TEXTURE
下载PDF
Effects of Mo and Zr on Microstructure,Mechanical Properties and Wear Resistance of Fe-Al Based Alloys 被引量:3
14
作者 I.D.Yeo H.S.Kim +1 位作者 Y.G.Yoo W.Y.Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期309-312,共4页
In this work the microstructure, mechanical properties and wear resistance of Fe-Al based alloys with various alloying elements were studied. The microstructures were examined by optical and scanning electron microsco... In this work the microstructure, mechanical properties and wear resistance of Fe-Al based alloys with various alloying elements were studied. The microstructures were examined by optical and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectroscope (EDS). Two types of alloys were prepared by vacuum arc melting. One is Fe-28Al based alloys (D03 structured) with and without alloying elements such as Mo and Zr. The other one is Fe-35Al based alloys (B2 structured) produced with the same manner. For both types of alloys, Mo addition had found to exhibit an equiaxed microstructure, while dendritic structure was observed to show the effect of Zr addition. These microstructural features were more evinced with increasing content of alloying element. Concerning the mechanical properties and wear resistance, Fe-35Al based alloys were superior to Fe-28Al based alloys over the whole temperature range investigated. 展开更多
关键词 Fe-Al alloy INTERMETALLIC Mechanical properties Wear resistance
下载PDF
One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor 被引量:4
15
作者 Zhengpeng Yang Yuanheng Jia +5 位作者 Yutao Niu Yongyi Zhang Chunjing Zhang Ping Li Meng Zhu Qingwen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期434-441,共8页
Graphene fiber-based supercapacitors hold great promise as flexible energy-storage devices. However, simultaneously achieving high ion-transport ability in electrode and electrolyte layer, which is crucial for realizi... Graphene fiber-based supercapacitors hold great promise as flexible energy-storage devices. However, simultaneously achieving high ion-transport ability in electrode and electrolyte layer, which is crucial for realizing the high electrochemical performance, still remains challenging. Here, a facile and effective strategy to solve the problem was proposed by developing a twisting-structured graphene/carbon nanotube(CNT) fiber supercapacitor via one-step wet-spinning process with customized multi-channel spinneret.The remarkable structure features of the resulting fiber supercapacitor with wrinkled and thin electrolyte layer, and well-developed porosity of fiber electrode favored the rapid infiltration and transport of electrolyte ions inside the electrode, as well as between electrode and electrolyte, thus boosting high specific capacitance of 187.6 mF cm^(-2) and energy density of 30.2 μWh cm^(-2), and featuring long cycling life(93%capacitance retention after 10,000 cycles) and excellent flexibility. Moreover, the specific capacitance and energy density could be further improved to 267.2 m F cm^(-2) and 66.8 μWh cm^(-2), respectively, when Mn O2 was incorporated into the fiber. 展开更多
关键词 One-step wet-spinning Graphene fiber-based supercapacitor Twisting-structured fiber Ion transport
下载PDF
Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites 被引量:9
16
作者 Duo Pan Gui Yang +11 位作者 Hala MAbo-Dief Jingwen Dong Fengmei Su Chuntai Liu Yifan Li Ben Bin Xu Vignesh Murugadoss Nithesh Naik Salah MEl-Bahy Zeinhom MEl-Bahy Minan Huang Zhanhu Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期209-227,共19页
With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical... With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires(SiC NWs)/boron nitride(BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m^(-1) K^(-1) at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy(EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 10^(11) Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of-21.5 dB and a wide effective absorption bandwidth(<-10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications. 展开更多
关键词 EPOXY Ice template Vertical alignment Thermal conductivity Multifunctionality
下载PDF
High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance 被引量:2
17
作者 Hao Xu Yufang Cao +4 位作者 Yong Li Pei Cao Dandan Liu Yongyi Zhang Qing wen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期240-247,共8页
Developing high power and energy supercapacitors(SCs)is a long-pursued goal for the application in transportation and energy storage station.Herein,a rationally-designed Co-doped nickel oxide nanosheets@carbon-welded ... Developing high power and energy supercapacitors(SCs)is a long-pursued goal for the application in transportation and energy storage station.Herein,a rationally-designed Co-doped nickel oxide nanosheets@carbon-welded carbon nanotube foam(Co-doped NiO@WCNTF)as freestanding electrode is successfully prepared for high power and energy SCs.The WCNTF framework with high specific surface area provides three dimensional highly conductive network for fast charge transport and ensures high loading of active materials(9.2 mg/cm2).Moreover,porous Co-doped NiO nanosheets uniformly anchored on the WCNTF framework enable rapid charge kinetics due to the high intrinsic conductivity of Co-doped Ni O nanosheets and their good contact with conductive WCNTF substrate.As a result,the unique integrated electrode with 3D architecture exhibits an ultrahigh specific capacitance of 11.45 F/cm2 at 5 mA/cm2,outstanding rate capability(11.45 F/cm2 at 5 mA/cm2 and a capacitance retention of 86.2%at 30 mA/cm2)and good cycling stability,suggesting great potential for high performance supercapacitor. 展开更多
关键词 Carbon nanotube foam Pseudocapacitors Co-doped NiO nanosheets Freestanding electrode
下载PDF
Effects of Precipitation Temperature on Nanoparticle Surface Area and Antibacterial Behaviour of Mg(OH)<sub>2</sub>and MgO Nanoparticles 被引量:3
18
作者 Banele Vatsha Phumlani Tetyana +3 位作者 Poslet Morgan Shumbula Jane Catherine Ngila Lucky Mashudu Sikhwivhilu Richard Motlhaletsi Moutloali 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期365-373,共9页
A series of MgO nanoparticles were prepared by first precipitating and isolating Mg(OH)2 nanoparticles from Mg(NO3)2 at three different temperatures using NaOH followed by their thermal decomposition also at three tem... A series of MgO nanoparticles were prepared by first precipitating and isolating Mg(OH)2 nanoparticles from Mg(NO3)2 at three different temperatures using NaOH followed by their thermal decomposition also at three temperature settings. The effects of temperature at which precipitation and thermal decomposition of the hydroxide occurred were studied to assess their influence on nanoparticle size and surface area. The synthesised nanoparticles were characterized using a suite of techniques including Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscope (SEM) analysis. The average diameter range of MgO nanoparticles ranged between 15 and 35 nm, while for the precursor Mg(OH)2 it varied between 28 and 45 nm. The nanoparticle surface area obtained from BET studies was found in all cases to increase from 77 to 106.4 m2/g with increasing temperature of precipitation. Antibacterial activities of the prepared Mg(OH)2 and MgO nanoparticles were evaluated against the Gram-negative bacteria, Escherichia coli, and the Gram-positive bacteria, Staphylococcus aureus, using agar diffusion method. A correlation between surface area and antibacterial activity supported the mechanism of bacterial inactivation as the generation of reactive species. The Mg(OH)2 and MgO nanoparticles both exhibited pronounced bactericidal activity towards the Gram positive bacteria than Gram negative bacteria as indicated by the extend of the zone of inhibition around the nanoparticle. 展开更多
关键词 MGO NANOPARTICLES Precipitation Crystallinity ANTIBACTERIAL
下载PDF
Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells 被引量:1
19
作者 Sajid A M Elseman +5 位作者 纪军 窦尚轶 黄浩 崔鹏 卫东 李美成 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期80-86,共7页
A depth behavioral understanding for each layer in perovskite solar cells (PSCs) and their inter[acial interactions as a whole has been emerged for further enhancement in power conversion efficiency (PCE). Herein,... A depth behavioral understanding for each layer in perovskite solar cells (PSCs) and their inter[acial interactions as a whole has been emerged for further enhancement in power conversion efficiency (PCE). Herein, NiO@Carbon was not only simulated as a hole transport layer but also as a counter electrode at the same time in the planar heterojunction based PSCs with the program wxAMPS (analysis of microelectronic and photonic structures)-lD. Simulation results revealed a high dependence of PCE on the effect of band offset between hole transport material (HTM) and perovskite layers. Meanwhile, the valence band offset (AEv) of NiO-HTM was optimized to be -0.1 to -0.3 eV lower than that of the perovskite layer. Additionally, a barrier cliff was identified to significantly influence the hole extraction at the HTM/absorber interface. Conversely, the AEv between the active material and NiO@Carbon-HTM was derived to be -0.15 to 0.15 eV with an enhanced efficiency from 15% to 16%. 展开更多
关键词 hole transporting materials counter electrode perovskite solar cells simulation
下载PDF
Computational Study of Ternary Devices: Stable, Low-Cost,and Efficient Planar Perovskite Solar Cells 被引量:1
20
作者 Sajid Sajid Ahmed Mourtada Elseman +9 位作者 Jun Ji Shangyi Dou Dong Wei Hao Huang Peng Cui Wenkang Xi Lihua Chu Yingfeng Li Bing Jiang Meicheng Li 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期144-154,共11页
Although perovskite solar cells with power conversion efficiencies(PCEs) more than 22% have been realized with expensive organic charge-transporting materials, their stability and high cost remain to be addressed. In ... Although perovskite solar cells with power conversion efficiencies(PCEs) more than 22% have been realized with expensive organic charge-transporting materials, their stability and high cost remain to be addressed. In this work, the perovskite configuration of MAPbX(MA = CH_3 NH_3,X = I_3, Br_3, or I_2Br) integrated with stable and low-cost Cu:Ni Oxhole-transporting material, ZnO electron-transporting material, and Al counter electrode was modeled as a planar PSC and studied theoretically. A solar cell simulation program(wx AMPS), which served as an update of the popular solar cell simulation tool(AMPS: Analysis of Microelectronic and Photonic Structures), was used. The study yielded a detailed understanding of the role of each component in the solar celland its effect on the photovoltaic parameters as a whole. The bandgap of active materials and operating temperature of the modeled solar cell were shown to influence the solar cell performance in a significant way. Further, the simulation results reveal a strong dependence of photovoltaic parameters on the thickness and defect density of the light-absorbing layers. Under moderate simulation conditions, the MAPb Br_3 and MAPbI _2 Br cells recorded the highest PCEs of 20.58 and 19.08%, respectively, while MAPbI_3 cell gave a value of 16.14%. 展开更多
关键词 Perovskite solar cells Copper-doped nickel oxide Zinc oxide Simulation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部