期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Magnesium-based nanocomposites:A review from mechanical,creep and fatigue properties
1
作者 S.Abazari A.Shamsipur +5 位作者 H.R.Bakhsheshi-Rad J.W.Drelich J.Goldman S.Sharif A.F.Ismail M.Razzaghi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2655-2687,共33页
The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NC... The addition of nanoscale additions to magnesium(Mg)based alloys can boost mechanical characteristics without noticeably decreasing ductility.Since Mg is the lightest structural material,the Mg-based nanocomposites(NCs)with improved mechanical properties are appealing materials for lightweight structural applications.In contrast to conventional Mg-based composites,the incorporation of nano-sized reinforcing particles noticeably boosts the strength of Mg-based nanocomposites without significantly reducing the formability.The present article reviews Mg-based metal matrix nanocomposites(MMNCs)with metallic and ceramic additions,fabricated via both solid-based(sintering and powder metallurgy)and liquid-based(disintegrated melt deposition)technologies.It also reviews strengthening models and mechanisms that have been proposed to explain the improved mechanical characteristics of Mg-based alloys and nanocomposites.Further,synergistic strengthening mecha-nisms in Mg matrix nanocomposites and the dominant equations for quantitatively predicting mechanical properties are provided.Furthermore,this study offers an overview of the creep and fatigue behavior of Mg-based alloys and nanocomposites using both traditional(uniaxial)and depth-sensing indentation techniques.The potential applications of magnesium-based alloys and nanocomposites are also surveyed. 展开更多
关键词 Magnesium-based nanocomposites Nanoreinforcement Strengthening mechanisms Creep properties Fatigue properties
下载PDF
骨组织工程用可降解多孔含银镁基支架的合成及体外性能(英文) 被引量:7
2
作者 Hamid Reza BAKHSHESHI-RAD Ehsan DAYAGHI +3 位作者 Ahmad Fauzi ISMAIL Madzlan AZIZ Ali AKHAVAN-FARID Xiongbiao CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期984-996,共13页
感染是骨损伤临床治疗中常见的并发症。镁基复合材料是一种可生物降解的抗菌生物材料,已被用于减少术后感染。本文作者合成含银镁基骨组织工程支架材料,并对其进行体外表征。通过造孔剂法制备4种不同银含量(0、0.5、1、和2 wt.%)的多孔... 感染是骨损伤临床治疗中常见的并发症。镁基复合材料是一种可生物降解的抗菌生物材料,已被用于减少术后感染。本文作者合成含银镁基骨组织工程支架材料,并对其进行体外表征。通过造孔剂法制备4种不同银含量(0、0.5、1、和2 wt.%)的多孔镁基支架,用Mg-Ca-Mn-Zn-xAg (MCMZ-xAg)表示,其中x表示银含量。研究银含量对材料的孔隙结构、力学性能、生物活性和抑菌区的影响。采用X射线衍射分析(XRD)、扫描电镜(SEM)、透射电镜(TEM)和荧光显微镜对支架进行表征。体外腐蚀试验结果表明,银含量低的支架比银含量高的支架具有更好的耐腐蚀性。抗菌活性的检测结果表明MCMZ-Ag支架具有显著抑制大肠杆菌和(E.coli)和金黄色葡萄球菌(S.aureus)生长的作用,且随着含银量的增加,MCMZ-Ag支架周围的抑菌区面积逐渐增加。然而,含银量过高会增加材料的细胞毒性。总之,含0.5wt.%Ag的支架因其具有连通的孔隙、足够的力学性能、抗菌活性和细胞黏附性能,在修复与替换受损和患病骨方面具有应用前景。 展开更多
关键词 镁基支架 生物相容性 抗菌活性 生物活性 腐蚀行为
下载PDF
银-沸石掺杂羟基磷灰石镁合金涂层的生物活性、体外腐蚀行为和抗菌活性(英文) 被引量:5
3
作者 H.R.BAKHSHESHI-RAD E.HAMZAH +3 位作者 A.F.ISMAIL M.AZIZ E.KARAMIAN N.IQBAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1553-1562,共10页
Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coatin... Mg-based alloys received significant attention for temporary implant applications while, their applications have been limited by high degradation rate. Therefore, silver-zeolite doped hydroxyapatite(Ag-Zeo-HAp) coating was synthesized on Ti O_2-coated Mg alloy by physical vapour deposition(PVD) assisted electrodeposition technique to decrease the degradation rate of Mg alloy. X-ray diffraction(XRD) analysis and field emission scanning electron microscopy(FE-SEM) images showed the formation of a uniform and compact layer of Ag-Zeo-HAp with a thickness of 15 μm on the Ti O_2 film with a thickness of 1 μm. The potentiodynamic polarization(PDP) and electrochemical impedance spectroscopy(EIS) tests indicated that corrosion resistance of Mg-Ca alloy was considerably increased by the Ag-Zeo-HAp coating. The bioactivity test in the simulated body fluid(SBF) solution showed that a dense and homogeneous bonelike apatite layer was formed on the Ag-Zeo-HAp surface after 14 d. Investigation of antibacterial activity via disk diffusion and spread plate methods showed that the Ag-Zeo-HAp coating had a significantly larger inhibition zone(3.86 mm) towards Escherichia coli(E. coli) compared with the Ti O_2-coated Mg alloy(2.61 mm). The Ag-Zeo-HAp coating showed high antibacterial performance, good bioactivity, and high corrosion resistance which make it a perfect coating material for biomedical applications.镁基合金作为临时植入材料的应用受到了越来越多的关注,然而,由于其降解速率高,因此应用受到了限制。为了降低镁合金的降解速率,本文作者采用物理气相沉积(PVD)辅助电沉积技术在镀氧化钛(Ti O_2)的镁合金上涂覆掺银-沸石羟基磷灰石(Ag-Zeo-HAp)涂层。X射线衍射(XRD)分析和场发射扫描电镜(FESEM)图片显示,在厚度约为1μm的二氧化钛薄膜上形成了均匀且致密的Ag-Zeo-HAp涂层,厚度约为15μm。动电位极化(PDP)和电化学阻抗谱(EIS)测试表明,通过Ag-Zeo-HAp涂层,Mg-Ca合金的耐腐蚀性大大提高。模拟体液(SBF)浸泡测试生物活性试验结果表明,在14 d后的Ag-Zeo-HAp表面上形成了一层致密且均匀的类骨磷灰石层。采用琼脂扩散法和平板涂布法对抗菌活性进行研究。结果表明,与Ti O_2涂层的镁合金(2.61 mm)相比,Ag-Zeo-HAp涂层对大肠杆菌(E.coli)的抑制区(3.86 mm)明显增大。Ag-Zeo-HAp涂层具有良好的抗菌性能、良好的生物活性和耐腐蚀性,是生物医学应用的理想涂层材料。 展开更多
关键词 镁合金 沸石 涂层 生物活性 腐蚀行为 抗菌活性
下载PDF
Surface modification of magnesium alloys using thermal and solid-state cold spray processes:Challenges and latest progresses 被引量:4
4
作者 Mohammadreza Daroonparvar Hamid Reza Bakhsheshi-Rad +8 位作者 Abbas Saberi Mahmood Razzaghi Ashish K Kasar Seeram Ramakrishna Pradeep L.Menezes Manoranjan Misra Ahmad Fauzi Ismail Safian Sharif Filippo Berto 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第8期2025-2061,共37页
Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly l... Potential engineering applications of magnesium(Mg)and Mg-based alloys,as the lightest structural metal,have made them a popular subject of study.However,the inferior corrosion and wear characteristics significantly limit their application range.It is widely recognized that surface treatment is the most commonly utilized technique for remarkably improving a substrate’s surface characteristics.Numerous methods have been introduced for the surface treatment of Mg and Mg-based alloys to improve their corrosion behavior and tribological performance.Among these,thermal spray(TS)technology provides several methods for deposition of various functional metallic,ceramic,cermet,or other coatings tailored to particular conditions.Recent researches have shown the tremendous potential for thermal spray coated Mg alloys for biomedical and industrial applications.In this context,the cold spray(CS)method,as a comparatively new TS coating technique,can generate the coating layer using kinetic energy rather than combined thermal and kinetic energies,like the high-velocity oxy-fuel(HVOF)spray method.Moreover,the CS process,as a revolutionary method,is able to repair and refurbish with a faster turnaround time;it also provides solutions that do not require dealing with the thermal stresses that are part of the other repair processes,such as welding or other TS processes using a high-temperature flame.In this review paper,the recently designed coatings that are specifically applied to Mg alloys(primarily for industrial applications)employing various coating processes are reviewed.Because of the increased utilization of CS technology for both 3D printed(additively manufactured)coatings and repair of structurally critical components,the most recent CS methods for the surface treatment,repair,and refurbishment of Mg alloys as well as their benefits and restrictions are then discussed and reviewed in detail.Lastly,the prospects of this field of study are briefly discussed,along with a summary of the presented work. 展开更多
关键词 Mg-based alloys Surface modification Thermal and cold spray processes Corrosion behavior Wear resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部