期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Third-harmonic generation and imaging with resonant Si membrane metasurface
1
作者 Ze Zheng Lei Xu +9 位作者 Lujun Huang Daria Smirnova Khosro Zangeneh Kamali Arman Yousefi Fu Deng Rocio Camacho-Morales Cuifeng Ying Andrey E.Miroshnichenko Dragomir N.Neshev Mohsen Rahmani 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第8期18-27,共10页
Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compare... Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compared to metasurfaces composed of the periodic arrangement of nanoparticles,inverse,so-called,membrane metasurfaces offer unique possibilities for supporting multipolar resonances,while maintaining small unit cell size,large mode volume and high field enhancement for enhancing nonlinear frequency conversion.Here,we theoretically and experimentally investigate the formation of bound states in the continuum(BICs)from silicon dimer-hole membrane metasurfaces.We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films.Furthermore,we show that by tuning the gap between the holes,one can open a leaky channel to transform these regular BICs into quasi-BICs,which can be excited directly under normal plane wave incidence.To prove the capabilities of such metasurfaces,we demonstrate the conversion of an infrared image to the visible range,based on the Third-harmonic generation(THG)process with the resonant membrane metasurfaces.Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies. 展开更多
关键词 nonlinear imaging third-harmonic generation bound states in the continuum membrane metasurfaces
下载PDF
Electrically programmable solid-state metasurfaces via flash localised heating
2
作者 Khosro Zangeneh Kamali Lei Xu +5 位作者 Nikita Gagrani Hark Hoe Tan Chennupati Jagadish Andrey Miroshnichenko Dragomir Neshev Mohsen Rahmani 《Light(Science & Applications)》 SCIE EI CAS CSCD 2023年第3期391-397,共7页
In the last decades,metasurfaces have attracted much attention because of their extraordinary light-scattering properties.However,their inherently static geometry is an obstacle to many applications where dynamic tuna... In the last decades,metasurfaces have attracted much attention because of their extraordinary light-scattering properties.However,their inherently static geometry is an obstacle to many applications where dynamic tunability in their optical behaviour is required.Currently,there is a quest to enable dynamic tuning of metasurface properties,particularly with fast tuning rate,large modulation by small electrical signals,solid state and programmable across multiple pixels.Here,we demonstrate electrically tunable metasurfaces driven by thermo-optic effect and flash-heating in silicon.We show a 9-fold change in transmission by<5 V biasing voltage and the modulation rise-time of<625µs.Our device consists of a silicon hole array metasurface encapsulated by transparent conducting oxide as a localised heater.It allows for video frame rate optical switching over multiple pixels that can be electrically programmed.Some of the advantages of the proposed tuning method compared with other methods are the possibility to apply it for modulation in the visible and near-infrared region,large modulation depth,working at transmission regime,exhibiting low optical loss,low input voltage requirement,and operating with higher than video-rate switching speed.The device is furthermore compatible with modern electronic display technologies and could be ideal for personal electronic devices such as flat displays,virtual reality holography and light detection and ranging,where fast,solid-state and transparent optical switches are required. 展开更多
关键词 tuning FLASH STATE
原文传递
Bound states in the continuum in all-dielectric metasurfaces with scaled lattice constants
3
作者 Mimi Zhou Shaojun You +11 位作者 Lei Xu Menghui Fan Jing Huang Wenbin Ma Mingzhe Hu Shengyun Luo Mohsen Rahmani Ya Cheng Lin Li Chaobiao Zhou Lujun Huang Andrey E.Miroshnichenko 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第12期101-109,共9页
Bound states in the continuum(BICs)have emerged as an efficient tool for trapping light at the nanoscale,promising several exciting applications in photonics.Breaking the structural symmetry has been proposed as an ef... Bound states in the continuum(BICs)have emerged as an efficient tool for trapping light at the nanoscale,promising several exciting applications in photonics.Breaking the structural symmetry has been proposed as an effective way of exciting quasiBICs(QBICs)and generating high-Q resonances.Herein,we demonstrate that QBICs can be excited in an all-dielectric metasurface by scaling the lattice of the metasurface,causing translational symmetry breaking.The corresponding BICs arise from band folding from the band edge to the Γ point in the first Brillouin zone.Multipole analysis reveals that the toroidal dipole dominates these QBICs.Furthermore,scaling the lattice along different directions provides additional freedom for tailoring QBICs,enabling polarization-dependent or-independent QBICs.In addition,this allows the realization of two QBICs at different wavelengths using plane-wave illumination with different polarizations on the metasurface.We experimentally demonstrated the existence of these BICs by fabricating silicon metasurfaces with scaled lattices and measuring their transmission spectra.The vanished resonant linewidth identifies BICs in the transmission spectrum,and the QBICs are characterized by highQ Fano resonances with the Q-factor reaching 2000.Our results have potential applications in enhancing light-matter interaction,such as laser,nonlinear harmonic generation,and strong coupling. 展开更多
关键词 lattice perturbation bound state in the continuum dielectric nanostructure
原文传递
Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach 被引量:10
4
作者 Lei Xu Mohsen Rahmani +9 位作者 Yixuan Ma Daria ASmirnova Khosro Zangeneh Kamali Fu Deng Yan Kei Chiang Lujun Huang Haoyang Zhang Stephen Gould Dragomir N.Neshev Andrey E.Miroshnichenko 《Advanced Photonics》 EI CSCD 2020年第2期57-67,共11页
A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand.Metasurfaces are versatile,novel platforms for manipulating the ... A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand.Metasurfaces are versatile,novel platforms for manipulating the scattering,color,phase,or intensity of light.Currently,one of the typical approaches for designing a metasurface is to optimize one or two variables among a vast number of fixed parameters,such as various materials’properties and coupling effects,as well as the geometrical parameters.Ideally,this would require multidimensional space optimization through direct numerical simulations.Recently,an alternative,popular approach allows for reducing the computational cost significantly based on a deep-learning-assisted method.We utilize a deep-learning approach for obtaining high-quality factor(high-Q)resonances with desired characteristics,such as linewidth,amplitude,and spectral position.We exploit such high-Q resonances for enhancedlight–matter interaction in nonlinearoptical metasurfaces and optomechanical vibrations,simultaneously.We demonstrate that optimized metasurfaces achieve up to 400-fold enhancement of the third-harmonic generation;at the same time,they also contribute to 100-fold enhancement of the amplitude of optomechanical vibrations.This approach can be further used to realize structures with unconventional scattering responses. 展开更多
关键词 machine learning dielectric nanostructures Fano resonance third-harmonic generation optoacoustics
原文传递
Infrared upconversion imaging in nonlinear metasurfaces 被引量:11
5
作者 Rocio Camacho-Morales Davide Rocco +15 位作者 Lei Xu Valerio Flavio Gili Nikolay Dimitrov Lyubomir Stoyanov Zhonghua Ma Andrei Komar Mykhaylo Lysevych Fouad Karouta Alexander Dreischuh Hark Hoe Tan Giuseppe Leo Costantino De Angelis Chennupati Jagadish Andrey E.Miroshnichenko Mohsen Rahmani Dragomir N.Neshev 《Advanced Photonics》 EI CSCD 2021年第3期83-92,共10页
Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,howeve... Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,however,require the use of materials such as narrow bandgap semiconductors,which are sensitive to thermal noise and often require cryogenic cooling.We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas,using a nonlinear wave-mixing process.We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation.In this process,an infrared image of a target is mixed inside the metasurface with a strong pump beam,translating the image from the infrared to the visible in a nanoscale ultrathin imaging device.Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences. 展开更多
关键词 metasurfaces nonlinear optical processes infrared photonics imaging.
原文传递
Programmable structured surfaces can change the future of wireless communications
6
作者 Lei Xu Mohsen Rahmani 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第7期1341-1342,共2页
An innovative time-varying metasurface has been reported to realise dual-channel data transmissions for light-to-microwave signal conversion.Such a novel technique is a remarkable step forward to realise full-spectrum... An innovative time-varying metasurface has been reported to realise dual-channel data transmissions for light-to-microwave signal conversion.Such a novel technique is a remarkable step forward to realise full-spectrum networks for catering for the growing demand for wireless communications.Moreover,this technique enriches the functionalities of tunable metasurfaces and stimulates new information-oriented applications. 展开更多
关键词 WIRELESS TUNABLE SURFACES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部