As a member of the 2 D family of materials, h-BN is an intrinsic insulator and could be employed as a dielectric or insulating inter-layer in ultra-thin devices. Monolayer h-BN can be synthesized on Rh(111) surfaces u...As a member of the 2 D family of materials, h-BN is an intrinsic insulator and could be employed as a dielectric or insulating inter-layer in ultra-thin devices. Monolayer h-BN can be synthesized on Rh(111) surfaces using borazine as a precursor. Using in-situ variable-temperature scanning tunneling microscopy(STM), we directly observed the formation of h-BN in real-time. By analyzing the deposition under variable substrate temperatures and the filling rate of the h-BN overlayer vacant hollows during growth, we studied the growth kinetics of how the borazine molecules construct the h-BN overlayer grown on the Rh surface.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51402026,11774154,and 11790311)the Program for High-Level Entrepreneurial and Innovative Talents Introduction,Jiangsu Province,the Basic Research Program of Jiangsu Province(Grant No.BK20130236)the National Key Research and Development Plan(Grant No.2016YFE0125200)
文摘As a member of the 2 D family of materials, h-BN is an intrinsic insulator and could be employed as a dielectric or insulating inter-layer in ultra-thin devices. Monolayer h-BN can be synthesized on Rh(111) surfaces using borazine as a precursor. Using in-situ variable-temperature scanning tunneling microscopy(STM), we directly observed the formation of h-BN in real-time. By analyzing the deposition under variable substrate temperatures and the filling rate of the h-BN overlayer vacant hollows during growth, we studied the growth kinetics of how the borazine molecules construct the h-BN overlayer grown on the Rh surface.