Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal...Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal and heuristic procedures. This allows one to obtain quasi-optimal solutions after a small number of steps, overcoming the NP-completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are considered to improve the quality of discrete problem solutions. An approach to solving discrete problems with fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria discrete problems are also discussed. The results of the paper are of a universal character and can be applied to the design, planning, operation, and control of systems and processes of different purposes. The results of the paper are already being used to solve power engineering problems.展开更多
文摘Generalized algorithms for solving problems of discrete, integer, and Boolean programming are discussed. These algorithms are associated with the method of normalized functions and are based on a combination of formal and heuristic procedures. This allows one to obtain quasi-optimal solutions after a small number of steps, overcoming the NP-completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are considered to improve the quality of discrete problem solutions. An approach to solving discrete problems with fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria discrete problems are also discussed. The results of the paper are of a universal character and can be applied to the design, planning, operation, and control of systems and processes of different purposes. The results of the paper are already being used to solve power engineering problems.