The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is p...The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.展开更多
Tapejara wellnhoferi, a small azhdarchoid pterodactyloid from the Early Cretaceous Santana Formation of Brazil, provides critical information about the aerodynamic function of its spectacular head crest. The cranial c...Tapejara wellnhoferi, a small azhdarchoid pterodactyloid from the Early Cretaceous Santana Formation of Brazil, provides critical information about the aerodynamic function of its spectacular head crest. The cranial crests in pterodactyloids were sexually dimorphic and are thought to have evolved in adult males in response to female mate choice. However, the location of cranial crests in front of the center of gravity would create instability in the yaw axis during flight and may seem like a handicap. Vertically aligned webbed feet probably suppressed the yawing rotations and instability from the crest. Here we show that the crest functioned as a front rudder to make agile turn and mediate flight control. A computer simulation model suggests that Tapejara had a large excess of muscle power available above the power required for continuous flapping flight. It could easily takeoff from a perch, ground, or water surface and land safely on the ground. It was an excellent glider with a gliding angle close to 4~ and a cruising speed of 27 km/h. Tapejara could soar efficiently on the windward side of cliffs or circle on rising thermals over tropical waters for efficient long-distance flight. Various control surfaces in the wings of Tapejara analogous to the slat, aileron, elevator, fin, rudder, and horizontal stabilizer of an aircraft made pterodactyloids versatile flyers.展开更多
In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the stu...In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the study of S809 low-speed and high-angle airfoil flow.The method is based on the ensemble transform Kalman filter(ETKF)algorithm,which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity constants,increasing the constant disturbance dimensions and designing a fine disturbance interval.The results show that the pressure distribution on the airfoil surface after assimilation is closer to the experimental value than that of the standard Spalart-Allmaras(S-A)model.The separated vortex estimated by filtering is fuller,and the eddy viscosity field information is more abundant,which is physically consistent with the observation information.Therefore,the data assimilation method based on the improved ensemble strategy can more accurately and effectively describe complex turbulence phenomena.展开更多
An iteration method of statistic linearization (IMSL) is presented. By this method, an equivalent linear term was formed in geometric relation and then an equivalent stiffness matrix for nonlinear term in vibration eq...An iteration method of statistic linearization (IMSL) is presented. By this method, an equivalent linear term was formed in geometric relation and then an equivalent stiffness matrix for nonlinear term in vibration equation was established. Using the method to solve the statistic linear vibration equations, the effect of geometric nonlinearity on the random response of rotational shell is obtained.展开更多
The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-...The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.展开更多
In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's ...In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods,namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.展开更多
Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus o...Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus on several static states in the varying sweep process,which ignore the unsteady aerodynamic characteristics.However,deviations to static aerodynamic forces are inevitably caused by dynamic sweep motion.In this work,first,unsteady aerodynamic characteristics on a typical variable-sweep UAV with large aspect ratio were analyzed.Then,deep mechanism of unsteady aerodynamic characteristics in the varying sweep process was studied.Finally,numerical simulation method integrated with structured moving overset grids was applied to solve the unsteady fluid of varying sweep process.The simulation results of a sweep forward-backward circle show a distinct dynamic hysteresis loop surrounding the static data for the aerodynamic forces.Compared with the static lift coefficients,at the same sweep angles,dynamic lift coefficient in sweep forward process are all smaller,while dynamic sweep backward lift coefficient are all larger.In addition,dynamic deviations to static lift coefficient are positively related with the varying sweep speeds.Mechanism study on the unsteady aerodynamic characteristics indicates that three key factors lead to the dynamic hysteresis loop in varying sweep process.They are the effects of additional velocity caused by varying sweep motion,the effects of flow hysteresis and viscosity.The additional velocity induced by sweep motion affects the transversal flow direction along the wing and the effective angle of attack at the airfoil profile.The physical properties of flow,the hysteresis and viscosity affect the unsteady aerodynamic characteristics by flow separation and induced vortexes.展开更多
In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircr...In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house' genetic algorithm was an appropriate tool in improving various aspects of a wing's aerodynamic performances.展开更多
In aircraft wing design,engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio.Conventional control surfaces such as flaps,ailerons,variable wi...In aircraft wing design,engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio.Conventional control surfaces such as flaps,ailerons,variable wing sweep and spoilers are used to trim the aircraft for other flight conditions.The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft's wings.This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure.The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines.The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing,which is equipped with an aileron.The upper surface of the wing is a flexible one,being closed to the wing tip;the flexible skin is made of light composite materials.The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime.The actuators transform the torque into vertical forces.Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws.The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved.The four vertical displacements of the actuators,correlated with the new shape of the wing,are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions.The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the wing for a specified flight condition.The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demonstrated experimentally through bench and wind tunnel tests of the morphing wing model.展开更多
The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a h...The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter.However,little research has been carried on the flow control methods employed to suppress both the dynamic stall induced by a shock wave and the dynamic stall occurring at high angles of attack.The dynamic stall suppression of a rotor airfoil by Co-Flow Jet(CFJ)is numerically investigated in this work.The flowfield of the airfoil is simulated by solving Reynolds Averaged Navier-Stokes equations based on the sliding mesh technique.Firstly,to improve the effect of a traditional CFJ on suppressing rotor airfoil shock-induced dynamic stall,an improved CFJ—a CFJ-sloping slot is proposed.Research shows that the CFJsloping slot suppresses the shock-induced dynamic stall more effectively than a traditional CFJ.Moreover,the improved CFJ can also suppress the dynamic stall of rotor airfoil at low speed and high angles of attack.The improved CFJ proposed in this paper is an effective flow control method that simultaneously suppresses the dynamic stall of the advancing and retreating blades.The mechanism of the improved CFJ in suppressing the dynamic stall of the rotor airfoil is studied,and a comparison is made between the improved CFJ and the traditional CFJ in terms of dynamic stall suppression at high and low speed.Finally,the effect of improved CFJ parameters(the jet momentum coefficient,the position of the injection/suction slot,and the size of the injection/suction slot)on shock-induced dynamic stall suppression is analyzed.展开更多
The paper deals with the design and experimental validation of the actuation mechanism control system for a morphing wing model.The experimental morphable wing model manufactured in this project is a full-size scale w...The paper deals with the design and experimental validation of the actuation mechanism control system for a morphing wing model.The experimental morphable wing model manufactured in this project is a full-size scale wing tip for a real aircraft equipped with an aileron.The morphing actuation of the model is based on a mechanism with four similar in house designed and manufactured actuators,positioned inside the wing on two parallel lines.Each of the four actuators used a BrushLess Direct Current(BLDC)electric motor integrated with a mechanical part performing the conversion of the angular displacements into linear displacements.The following have been chosen as successive steps in the design of the actuator control system:(A)Mathematical and software modelling of the actuator;(B)Design of the control system architecture and tuning using Internal Model Control(IMC)methodology;(C)Numerical simulation of the controlled actuator and its testing on bench and wind tunnel.The morphing wing experimental model is tested both at the laboratory level,with no airflow,to evaluate the components integration and the whole system functioning,but also in the wind tunnel,in the presence of airflow,to evaluate its behavior and the aerodynamic gain.展开更多
Algorithms for adaptive mesh refinement using a residual error estimator are proposed for fluid flow problems in a finite volume framework.The residual error estimator,referred to as theℜ-parameter is used to derive r...Algorithms for adaptive mesh refinement using a residual error estimator are proposed for fluid flow problems in a finite volume framework.The residual error estimator,referred to as theℜ-parameter is used to derive refinement and coarsening criteria for the adaptive algorithms.An adaptive strategy based on theℜ-parameter is proposed for continuous flows,while a hybrid adaptive algorithm employing a combination of error indicators and theℜ-parameter is developed for discontinuous flows.Numerical experiments for inviscid and viscous flows on different grid topologies demonstrate the effectiveness of the proposed algorithms on arbitrary polygonal grids.展开更多
An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explo...An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explore the flow control effect and mechanism of the air-supplement actuator,via particle image velocimetry experiments in a low-speed wind tunnel,the flow field and boundary layer characteristics of a two-dimensional airfoil surface under different actuation states were compared for different attack angles and jet orifices.The experimental results show that,compared with the conventional actuation state,the jet energy of the air-supplement PSJ is higher and the indirect mixing effect of the counter-vortex sequence produced by the jet-mainstream interaction is stronger.Furthermore,the boundary layer mixing effect is better,which can further suppress flow separation and improve the critical flow separation attack angle.Moreover,increasing the jet momentum coefficient can enhance the flow control effect.The findings of this study could provide guidance for the flow control application of air-supplement PSJs.展开更多
基金supported by the National Natural Science Foundation of China (No. 90716011)
文摘The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.
文摘Tapejara wellnhoferi, a small azhdarchoid pterodactyloid from the Early Cretaceous Santana Formation of Brazil, provides critical information about the aerodynamic function of its spectacular head crest. The cranial crests in pterodactyloids were sexually dimorphic and are thought to have evolved in adult males in response to female mate choice. However, the location of cranial crests in front of the center of gravity would create instability in the yaw axis during flight and may seem like a handicap. Vertically aligned webbed feet probably suppressed the yawing rotations and instability from the crest. Here we show that the crest functioned as a front rudder to make agile turn and mediate flight control. A computer simulation model suggests that Tapejara had a large excess of muscle power available above the power required for continuous flapping flight. It could easily takeoff from a perch, ground, or water surface and land safely on the ground. It was an excellent glider with a gliding angle close to 4~ and a cruising speed of 27 km/h. Tapejara could soar efficiently on the windward side of cliffs or circle on rising thermals over tropical waters for efficient long-distance flight. Various control surfaces in the wings of Tapejara analogous to the slat, aileron, elevator, fin, rudder, and horizontal stabilizer of an aircraft made pterodactyloids versatile flyers.
基金Project supported by the Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research of China(No.614220119040101)the National Natural Science Foundation of China(No.91852115)。
文摘In order to increase the accuracy of turbulence field reconstruction,this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework,and apply it to the study of S809 low-speed and high-angle airfoil flow.The method is based on the ensemble transform Kalman filter(ETKF)algorithm,which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity constants,increasing the constant disturbance dimensions and designing a fine disturbance interval.The results show that the pressure distribution on the airfoil surface after assimilation is closer to the experimental value than that of the standard Spalart-Allmaras(S-A)model.The separated vortex estimated by filtering is fuller,and the eddy viscosity field information is more abundant,which is physically consistent with the observation information.Therefore,the data assimilation method based on the improved ensemble strategy can more accurately and effectively describe complex turbulence phenomena.
文摘An iteration method of statistic linearization (IMSL) is presented. By this method, an equivalent linear term was formed in geometric relation and then an equivalent stiffness matrix for nonlinear term in vibration equation was established. Using the method to solve the statistic linear vibration equations, the effect of geometric nonlinearity on the random response of rotational shell is obtained.
基金supported by the National Natural Science Foundation of China(Nos.12072156, 12032012)the Foundation of Rotor Aerodynamic Key Laboratory (No.RAL20190102)the Priority Academic Program Development Project of Jiangsu Higher Education Institutions(PAPD)。
文摘The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.
基金the Consortium in Research and Aerospace in Canada (CRIAQ)the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support
文摘In this paper, an ‘in-house' genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm's performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods,namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.
基金supported by the National Natural Science Foundation of China(No.12202384)the Rotor Aerodynamics Key Laboratory Foundation of China Aerodynamics Research and Development Center(No.2108RAL202102-5).
文摘Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus on several static states in the varying sweep process,which ignore the unsteady aerodynamic characteristics.However,deviations to static aerodynamic forces are inevitably caused by dynamic sweep motion.In this work,first,unsteady aerodynamic characteristics on a typical variable-sweep UAV with large aspect ratio were analyzed.Then,deep mechanism of unsteady aerodynamic characteristics in the varying sweep process was studied.Finally,numerical simulation method integrated with structured moving overset grids was applied to solve the unsteady fluid of varying sweep process.The simulation results of a sweep forward-backward circle show a distinct dynamic hysteresis loop surrounding the static data for the aerodynamic forces.Compared with the static lift coefficients,at the same sweep angles,dynamic lift coefficient in sweep forward process are all smaller,while dynamic sweep backward lift coefficient are all larger.In addition,dynamic deviations to static lift coefficient are positively related with the varying sweep speeds.Mechanism study on the unsteady aerodynamic characteristics indicates that three key factors lead to the dynamic hysteresis loop in varying sweep process.They are the effects of additional velocity caused by varying sweep motion,the effects of flow hysteresis and viscosity.The additional velocity induced by sweep motion affects the transversal flow direction along the wing and the effective angle of attack at the airfoil profile.The physical properties of flow,the hysteresis and viscosity affect the unsteady aerodynamic characteristics by flow separation and induced vortexes.
基金Bombardier Aerospace,Thales Canada,The Consortium in Research and Aerospace in Canada(CRIAQ)the Natural Sciences and Engineering Research Council of Canada(NSERC)for their financial support
文摘In the present paper, an ‘in-house' genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house' genetic algorithm was an appropriate tool in improving various aspects of a wing's aerodynamic performances.
基金the Consortium for Research and Innovation in Aerospace in Quebec(CRIAQ)the National Sciences and Engineering Research Council (NSERC) for their funding of the CRIAQ MDO 505 project
文摘In aircraft wing design,engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio.Conventional control surfaces such as flaps,ailerons,variable wing sweep and spoilers are used to trim the aircraft for other flight conditions.The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft's wings.This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure.The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines.The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing,which is equipped with an aileron.The upper surface of the wing is a flexible one,being closed to the wing tip;the flexible skin is made of light composite materials.The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime.The actuators transform the torque into vertical forces.Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws.The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved.The four vertical displacements of the actuators,correlated with the new shape of the wing,are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions.The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the wing for a specified flight condition.The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demonstrated experimentally through bench and wind tunnel tests of the morphing wing model.
基金supported by the National Natural Science Foundation of China(No.12072305)Equipment Field Preresearch Fund,China(No.61402060205)+1 种基金the Open Fund from Rotor Aerodynamics Key Laboratory of China Aerodynamics Research and Development Center,China(No.RAL20190303)the Aeronautics Power Foundation,China(No.6141B09050347)。
文摘The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter.However,little research has been carried on the flow control methods employed to suppress both the dynamic stall induced by a shock wave and the dynamic stall occurring at high angles of attack.The dynamic stall suppression of a rotor airfoil by Co-Flow Jet(CFJ)is numerically investigated in this work.The flowfield of the airfoil is simulated by solving Reynolds Averaged Navier-Stokes equations based on the sliding mesh technique.Firstly,to improve the effect of a traditional CFJ on suppressing rotor airfoil shock-induced dynamic stall,an improved CFJ—a CFJ-sloping slot is proposed.Research shows that the CFJsloping slot suppresses the shock-induced dynamic stall more effectively than a traditional CFJ.Moreover,the improved CFJ can also suppress the dynamic stall of rotor airfoil at low speed and high angles of attack.The improved CFJ proposed in this paper is an effective flow control method that simultaneously suppresses the dynamic stall of the advancing and retreating blades.The mechanism of the improved CFJ in suppressing the dynamic stall of the rotor airfoil is studied,and a comparison is made between the improved CFJ and the traditional CFJ in terms of dynamic stall suppression at high and low speed.Finally,the effect of improved CFJ parameters(the jet momentum coefficient,the position of the injection/suction slot,and the size of the injection/suction slot)on shock-induced dynamic stall suppression is analyzed.
基金Bombardier AerospaceThales+1 种基金the Consortium for Research and Innovation in Aerospace in Quebec(CRIAQ)the National Sciences and Engineering Research Council(NSERC)for the funding received in connection with the CRIAQ MDO 505 project。
文摘The paper deals with the design and experimental validation of the actuation mechanism control system for a morphing wing model.The experimental morphable wing model manufactured in this project is a full-size scale wing tip for a real aircraft equipped with an aileron.The morphing actuation of the model is based on a mechanism with four similar in house designed and manufactured actuators,positioned inside the wing on two parallel lines.Each of the four actuators used a BrushLess Direct Current(BLDC)electric motor integrated with a mechanical part performing the conversion of the angular displacements into linear displacements.The following have been chosen as successive steps in the design of the actuator control system:(A)Mathematical and software modelling of the actuator;(B)Design of the control system architecture and tuning using Internal Model Control(IMC)methodology;(C)Numerical simulation of the controlled actuator and its testing on bench and wind tunnel.The morphing wing experimental model is tested both at the laboratory level,with no airflow,to evaluate the components integration and the whole system functioning,but also in the wind tunnel,in the presence of airflow,to evaluate its behavior and the aerodynamic gain.
文摘Algorithms for adaptive mesh refinement using a residual error estimator are proposed for fluid flow problems in a finite volume framework.The residual error estimator,referred to as theℜ-parameter is used to derive refinement and coarsening criteria for the adaptive algorithms.An adaptive strategy based on theℜ-parameter is proposed for continuous flows,while a hybrid adaptive algorithm employing a combination of error indicators and theℜ-parameter is developed for discontinuous flows.Numerical experiments for inviscid and viscous flows on different grid topologies demonstrate the effectiveness of the proposed algorithms on arbitrary polygonal grids.
基金Fundamental Research Funds for the Central Universities of China(Grant no.20720210050)Natural Science Foundation of China(Grant no.51707169)+1 种基金Open Fund of Rotor Aerodynamics Key Laboratory,China Aerodynamics Research and Development Center(Grant no.RAL202103-1)Xiamen University Training Program of Innovation and Entrepreneurship for Undergraduates(Grant no.202110384082).
文摘An air-supplement plasma synthetic jet(PSJ)actuator increases the air supplemental volume in the recovery stage and improves the jet energy by attaching a check valve to the chamber of a conventional actuator.To explore the flow control effect and mechanism of the air-supplement actuator,via particle image velocimetry experiments in a low-speed wind tunnel,the flow field and boundary layer characteristics of a two-dimensional airfoil surface under different actuation states were compared for different attack angles and jet orifices.The experimental results show that,compared with the conventional actuation state,the jet energy of the air-supplement PSJ is higher and the indirect mixing effect of the counter-vortex sequence produced by the jet-mainstream interaction is stronger.Furthermore,the boundary layer mixing effect is better,which can further suppress flow separation and improve the critical flow separation attack angle.Moreover,increasing the jet momentum coefficient can enhance the flow control effect.The findings of this study could provide guidance for the flow control application of air-supplement PSJs.