期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Study on interface failure of shape memory alloy(SMA)reinforced smart structure with damages 被引量:2
1
作者 Zili Hu Ke Xiong Xinwei Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期286-293,共8页
Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively... Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures. 展开更多
关键词 Smart structures DAMAGES SMA FAILURE Meso-mechanics analysis Variational principle
下载PDF
Finite Element Analysis of Smart Structures with Piezoelectric Sensors/Actuators Including Debonding 被引量:2
2
作者 郑世杰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第4期246-250,共5页
In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes ... In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes to the static and dynamic response. In thepresent paper, an novel Enhanced Assumed Strain(EAS) piezoelectric solid element formulation isdeveloped for vibration active control of laminated structures bonded with piezoelectric sensors andactuators. Unlike the conventional brick elements, the present formulation is very reliable, moreaccurate, and computationally efficient and can be used to model the response of shell structuresbesides thin plates. Delaminations are modeled by pairs of nodes with the same coordinates butdifferent node numbers, and numerical results demonstrate the performance of the element and theglobal and local effects of debonding sensors/actuators on the dynamics of the adaptive laminates. 展开更多
关键词 computational solid mechanics dehonded piezoelectric sensors/actuators finite element EAS piezoelectric solid element
下载PDF
A new kind of nonlinear fractional-order chaotic phenomenon in coupled systems: coexistence of anti-phase and complete synchronization
3
作者 Zhang Jun-Feng Pei Qiu-Yu Zhang Xiao-Li 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期90-96,共7页
In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables ar... In this paper, we have found a kind of interesting nonlinear phenomenon hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti- phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given. 展开更多
关键词 fractional-order unified chaotic system hybrid synchronization linear controller singledrive variable
下载PDF
Study on the spectral response of fiber Bragg grating sensor under non-uniform strain distribution in structural health monitoring 被引量:20
4
作者 黄红梅 袁慎芳 《Optoelectronics Letters》 EI 2011年第2期109-112,共4页
Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments ... Many theoretical studies have been developed to study the spectral response of a fiber Bragg grating (FBG) under non-uniform strain distribution along the length of FBG in recent years. However, almost no experiments were designed to obtain the evolution of the spectrum when a FBG is subjected to non-uniform strain. In this paper, the spectral responses of a FBG under non-uniform strain distributions are given and a numerical simulation based on the Runge-Kutta method is introduced to investigate the responses of the FBG under some typical non-uniform transverse strain fields, including both linear strain gradient and quadratic strain field. Experiment is carried out by using loads applied at different locations near the FBG. Good agreements between experimental results and numerical simulations are obtained. 展开更多
关键词 Computer simulation EXPERIMENTS Fiber Bragg gratings Fiber optic components Fiber optic sensors Numerical methods Runge Kutta methods Structural health monitoring
原文传递
Energy Conversion Efficiency of Rainbow Shape Piezoelectric Transducer 被引量:3
5
作者 LIU Xiangjian CHEN Renwen ZHU Liya 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期691-697,共7页
With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoe... With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer. 展开更多
关键词 energy conversion efficiency rainbow shape piezoelectric transducer theoretical analysis energy harvesting elec-tromechanical coupling coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部