Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA) discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of ce...Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA) discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of cells. Attached cells were sub- ject to more severe mechanical damage than isolated cells because attached cells had larger contacting area with ice and the three dimensional movements of iso- lated cells made them more flexible than attached cells that could only deform in one dimension. Results showed that the viability of attached OB cells decreased significantly compared with the viability of isolated OB cells under the same cryo- preservation procedure. Extracellular ice, differential thermal contraction, and mechanical stresses were the major damaging factors for OB cells attached to HA discs and glass coverslips.展开更多
基金Supported by the Strategic Partnership Grant from Michigan State University Foundation, the College of Engineering and Mines (University of Arizona)the National Natural Science Foundation of China (Grant Nos. 50436030, 50576059)+1 种基金Shanghai Leading Academic Discipline Project (Grant No. P0502) Key Project of Shanghai Education Bureau (Grant No. 05ZZ24)
文摘Damage mechanisms for osteoblast cells (OBs) attached to hydroxyapatite (HA) discs and glass coverslips were comprehensively investigated. Cell-cell, cell-matrix interaction altered the cryobiological properties of cells. Attached cells were sub- ject to more severe mechanical damage than isolated cells because attached cells had larger contacting area with ice and the three dimensional movements of iso- lated cells made them more flexible than attached cells that could only deform in one dimension. Results showed that the viability of attached OB cells decreased significantly compared with the viability of isolated OB cells under the same cryo- preservation procedure. Extracellular ice, differential thermal contraction, and mechanical stresses were the major damaging factors for OB cells attached to HA discs and glass coverslips.