Objective: To observe the effect of electroacupuncture (EA) on synaptic structure of hippocampal nerve felts and synaptophysin(SYN)expression in rats with cerebral ischemic injury. Methods: Sixty Wistar rats were rand...Objective: To observe the effect of electroacupuncture (EA) on synaptic structure of hippocampal nerve felts and synaptophysin(SYN)expression in rats with cerebral ischemic injury. Methods: Sixty Wistar rats were randomized into sham-operation group, cerebral ischemia (CI) group and EA group, each of which was further divided into 1week (W) and 5W subgroups. CI injury model was established by occlusion of the bilateral common carotid arteries. 'Baihui'(百会 GV 20), 'Dazhui' (大椎 GV 14), 'Renzhong'(人中 GV 26) and 'Guangyuan'(关会 CV 4) were punctured and stimulated electrically. The brain tissue sections containing hippocampus region were stained with immu nohistochemical technique and observed under light microscope and transmission electronic microscope. Results: After CI, the ischemic injury as degeneration of the presynapse compositions, decrease of the synaptic numeral density, and low expression of SYN were observed in hippocampal CA1 area. By the 5th week after CI, the neonatal synapses of Cl and EA groups appeared, and SYN expression was upregulated. In EA group, the recovery of the numeral density of synapses was especially noticeable, being 93.8% of that of sham-operation group and significantly higher than that in Cl group (P<0.01). Compared with sham-operation group, the calibrated optical density (COD) values of SYN increased to 70% in CI group, and 93.3% in EA group, and COD value in EA group was significantly higher than that in Cl group (P<0.01). Conclusion: EA can function in promoting synaptic regeneration and enhancing and perfecting the actions of the reconstructed synapses in hippocampal CA1 area in Cl rats.展开更多
文摘Objective: To observe the effect of electroacupuncture (EA) on synaptic structure of hippocampal nerve felts and synaptophysin(SYN)expression in rats with cerebral ischemic injury. Methods: Sixty Wistar rats were randomized into sham-operation group, cerebral ischemia (CI) group and EA group, each of which was further divided into 1week (W) and 5W subgroups. CI injury model was established by occlusion of the bilateral common carotid arteries. 'Baihui'(百会 GV 20), 'Dazhui' (大椎 GV 14), 'Renzhong'(人中 GV 26) and 'Guangyuan'(关会 CV 4) were punctured and stimulated electrically. The brain tissue sections containing hippocampus region were stained with immu nohistochemical technique and observed under light microscope and transmission electronic microscope. Results: After CI, the ischemic injury as degeneration of the presynapse compositions, decrease of the synaptic numeral density, and low expression of SYN were observed in hippocampal CA1 area. By the 5th week after CI, the neonatal synapses of Cl and EA groups appeared, and SYN expression was upregulated. In EA group, the recovery of the numeral density of synapses was especially noticeable, being 93.8% of that of sham-operation group and significantly higher than that in Cl group (P<0.01). Compared with sham-operation group, the calibrated optical density (COD) values of SYN increased to 70% in CI group, and 93.3% in EA group, and COD value in EA group was significantly higher than that in Cl group (P<0.01). Conclusion: EA can function in promoting synaptic regeneration and enhancing and perfecting the actions of the reconstructed synapses in hippocampal CA1 area in Cl rats.