ISFM (integrated soil fertility management) involving annual sequencing of dual-purpose early-maturing first crop of cowpeas with biomass incorporation before seeding second crop of early-maturing NERICA (New Rice ...ISFM (integrated soil fertility management) involving annual sequencing of dual-purpose early-maturing first crop of cowpeas with biomass incorporation before seeding second crop of early-maturing NERICA (New Rice for Africa) was evaluated to enhance rice productivity and soil-nitrogen. Five dual-purpose early-maturing cowpea cultivars and local cultivar (Katche) were seeded early in the wet season in five farmers' fields at Ouake (9046' N, 1°35′ E, highly degraded-savanna), Benin. After pod harvest, cowpea residues were minimally worked into the soil using minimum tillage with hand-hoe and seeded with early-maturing, resilient NERICA8 rice that received either 20 kg N/ha or zero-N. Cowpea grain yield averaged 0.1-0.3 Mg/ha, and mean aboveground cowpea biomass produced and recycled was 0.54-0.64 Mg/ha among best cultivars (IT97-568-11 and IT89KD-288). NERICA8 seeded after cowpea cv. IT97-568-11 and supplied with 20N gave the greatest grain yield of about 2.0 Mg/ha, accounting for 500% heavier grains than fallow-rice rotation with zero-N. Mineral-N dynamics monitored under NERICA8 in year 2 showed that previous IT97-568-11 plots had the highest mineral-N at tillering which persisted till panicle initiation stage. The adoption of an ISFM comprising annual cowpea-NERICA sequence by smallholder rice farmers could enhance productivity and improve N-supply in fragile savannas.展开更多
To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to s...To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to satisfy the needs which are enormous. The Smart-Valley technology which is actually popularized in certain coastal countries of West Africa would therefore be a boon to increase the productivity of the Sudanese lowlands if it well regulates runoff. The object of this study was therefore to know if smart valley technology could increase soil moisture in order to mitigate the impact of drought’s pockets on rice cultivation in the Sudanese lowlands. The experiment takes place in three lowlands during the rainy seasons 2018 and 2019. The climatic data comes from the meteorological stations in the study areas as well as those installed on the sites. The infiltration measurements were carried out using the double Muntz ring. The soil moisture measurement device consisted of a smart valley area of 5 ha and an undeveloped area of 5 ha per site. Sixteen tubes were installed per lowland allowing the humidity to be measured at a depth of 10, 20, 30, 40 cm using a probe. Four rice varieties, Orylux6, FKR62N, FKR19 and FKR64 were tested on plots of 0.25 ha per variety in the smart valley and undeveloped parts. The results showed that the humidity level was 12% higher in the smart-valley plots throughout the cycle compared to the unmanaged area. In addition, humidity decreases rapidly in unmanaged plots as rain becomes increasingly scarce. Finally, the smart-valley development allowed an average increase in rice yields of 21% compared to the average yield of undeveloped plots.展开更多
Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Edi...Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".展开更多
Over the past 70 years,the world has witnessed extraordinary growth in crop productivity,enabled by a suite of technological advances,including higher yielding crop varieties,improved farm management,synthetic agroche...Over the past 70 years,the world has witnessed extraordinary growth in crop productivity,enabled by a suite of technological advances,including higher yielding crop varieties,improved farm management,synthetic agrochemicals,and agricultural mechanization.While this"Green Revolution"intensified crop production,and is credited with reducing famine and malnutrition,its benefits were accompanied by several undesirable collateral effects(Pingali,2012).These include a narrowing of agricultural biodiversity,stemming from increased monoculture and greater reliance on a smaller number of crops and crop varieties for the majority of our calories.This reduction in diversity has created vulnerabilities to pest and disease epidemics,climate variation,and ultimately to human health(Harlan,1972).展开更多
文摘ISFM (integrated soil fertility management) involving annual sequencing of dual-purpose early-maturing first crop of cowpeas with biomass incorporation before seeding second crop of early-maturing NERICA (New Rice for Africa) was evaluated to enhance rice productivity and soil-nitrogen. Five dual-purpose early-maturing cowpea cultivars and local cultivar (Katche) were seeded early in the wet season in five farmers' fields at Ouake (9046' N, 1°35′ E, highly degraded-savanna), Benin. After pod harvest, cowpea residues were minimally worked into the soil using minimum tillage with hand-hoe and seeded with early-maturing, resilient NERICA8 rice that received either 20 kg N/ha or zero-N. Cowpea grain yield averaged 0.1-0.3 Mg/ha, and mean aboveground cowpea biomass produced and recycled was 0.54-0.64 Mg/ha among best cultivars (IT97-568-11 and IT89KD-288). NERICA8 seeded after cowpea cv. IT97-568-11 and supplied with 20N gave the greatest grain yield of about 2.0 Mg/ha, accounting for 500% heavier grains than fallow-rice rotation with zero-N. Mineral-N dynamics monitored under NERICA8 in year 2 showed that previous IT97-568-11 plots had the highest mineral-N at tillering which persisted till panicle initiation stage. The adoption of an ISFM comprising annual cowpea-NERICA sequence by smallholder rice farmers could enhance productivity and improve N-supply in fragile savannas.
文摘To reduce the impact of rainfall variability on lowland rice yields, Burkina Faso state develops lowlands for small rice farmers. However, the high cost of these infrastructures makes impossible to duplicate them to satisfy the needs which are enormous. The Smart-Valley technology which is actually popularized in certain coastal countries of West Africa would therefore be a boon to increase the productivity of the Sudanese lowlands if it well regulates runoff. The object of this study was therefore to know if smart valley technology could increase soil moisture in order to mitigate the impact of drought’s pockets on rice cultivation in the Sudanese lowlands. The experiment takes place in three lowlands during the rainy seasons 2018 and 2019. The climatic data comes from the meteorological stations in the study areas as well as those installed on the sites. The infiltration measurements were carried out using the double Muntz ring. The soil moisture measurement device consisted of a smart valley area of 5 ha and an undeveloped area of 5 ha per site. Sixteen tubes were installed per lowland allowing the humidity to be measured at a depth of 10, 20, 30, 40 cm using a probe. Four rice varieties, Orylux6, FKR62N, FKR19 and FKR64 were tested on plots of 0.25 ha per variety in the smart valley and undeveloped parts. The results showed that the humidity level was 12% higher in the smart-valley plots throughout the cycle compared to the unmanaged area. In addition, humidity decreases rapidly in unmanaged plots as rain becomes increasingly scarce. Finally, the smart-valley development allowed an average increase in rice yields of 21% compared to the average yield of undeveloped plots.
文摘Short Retraction Notice The paper does not meet the standards of "Advances in Bioscience and Biotechnology". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Abass Alavi (EiC of ABB). Please see the article page for more details. The full retraction notice in PDF is preceding the original paper which is marked "RETRACTED".
文摘Over the past 70 years,the world has witnessed extraordinary growth in crop productivity,enabled by a suite of technological advances,including higher yielding crop varieties,improved farm management,synthetic agrochemicals,and agricultural mechanization.While this"Green Revolution"intensified crop production,and is credited with reducing famine and malnutrition,its benefits were accompanied by several undesirable collateral effects(Pingali,2012).These include a narrowing of agricultural biodiversity,stemming from increased monoculture and greater reliance on a smaller number of crops and crop varieties for the majority of our calories.This reduction in diversity has created vulnerabilities to pest and disease epidemics,climate variation,and ultimately to human health(Harlan,1972).