This study was conducted to investigate the effect of a commercial essential oil (EO) additive on milk production and methane (CH4) emissions from dairy cows. Early lactation Holstein-Friesian dairy cows were fed gras...This study was conducted to investigate the effect of a commercial essential oil (EO) additive on milk production and methane (CH4) emissions from dairy cows. Early lactation Holstein-Friesian dairy cows were fed grass, whole crop wheat and corn silage total mixed ration. Cows were allocated to one of two experimental treatments: Control (no additive, CON) or 1 g/head/day of EO. Cows were housed in a free stall barn, split into two pens for the duration of the experiment. Two gas data loggers units used to measure CH4 emissions were provided per pen for the duration of the 22 week-long study. Milk yield was determined daily, and milk components were analyzed every two weeks. CH4 was recorded continuously, and daily values were tabulated. Body weight and body condition score were determined at the start and bi-weekly. Results were analyzed as a randomized complete block trial. In total, 149 cows participated in the study (76 CON, 73 EO). Milk yields were greater (P < 0.05) for the test treatment (28.3 CON, 31.2 EO) with no change in milk component concentrations. Milk component concentrations were unaffected (P > 0.05) by treatment. Yields of fat, protein, lactose, and solids were higher for EO fed cows (P 4 output was reduced with the EO compared to the CON treatment (411 g/day vs 438 g/day;13.8 g/L of milk vs 17.2 g/L of milk, P < 0.05) over the duration of the trial. There were no effects of treatment on reproductive performance or the occurrence of mastitis. Feeding EO to dairy cows reduced CH4 emissions whilst also increasing performance.展开更多
文摘This study was conducted to investigate the effect of a commercial essential oil (EO) additive on milk production and methane (CH4) emissions from dairy cows. Early lactation Holstein-Friesian dairy cows were fed grass, whole crop wheat and corn silage total mixed ration. Cows were allocated to one of two experimental treatments: Control (no additive, CON) or 1 g/head/day of EO. Cows were housed in a free stall barn, split into two pens for the duration of the experiment. Two gas data loggers units used to measure CH4 emissions were provided per pen for the duration of the 22 week-long study. Milk yield was determined daily, and milk components were analyzed every two weeks. CH4 was recorded continuously, and daily values were tabulated. Body weight and body condition score were determined at the start and bi-weekly. Results were analyzed as a randomized complete block trial. In total, 149 cows participated in the study (76 CON, 73 EO). Milk yields were greater (P < 0.05) for the test treatment (28.3 CON, 31.2 EO) with no change in milk component concentrations. Milk component concentrations were unaffected (P > 0.05) by treatment. Yields of fat, protein, lactose, and solids were higher for EO fed cows (P 4 output was reduced with the EO compared to the CON treatment (411 g/day vs 438 g/day;13.8 g/L of milk vs 17.2 g/L of milk, P < 0.05) over the duration of the trial. There were no effects of treatment on reproductive performance or the occurrence of mastitis. Feeding EO to dairy cows reduced CH4 emissions whilst also increasing performance.