Soybean(Glycine max(L.) Merr.) is a non-native and non-staple crop in sub-Saharan Africa(SSA) with potential to be a commercial crop owing to its wide range of uses as food, feed,and industrial raw material. Soybean w...Soybean(Glycine max(L.) Merr.) is a non-native and non-staple crop in sub-Saharan Africa(SSA) with potential to be a commercial crop owing to its wide range of uses as food, feed,and industrial raw material. Soybean was first introduced to SSA by Chinese traders in the19 th century and was cultivated as an economic crop as early as 1903 in South Africa. In the past four decades, soybean cultivation area and production in SSA has increased exponentially, from about 20,000 ha and 13,000 t in the early 1970 s to 1,500,000 ha and2,300,000 t in 2016. Soybean yield has been stagnant in SSA for decades at about 1.1 t ha^(-1),much lower than the world average, representing one of the most challenging issues in the soybean industry in SSA. The low soybean yield in SSA can be attributed to the use of poorperforming varieties and to the limited application of fertilizers and rhizobial inoculants in soils with no history of soybean production. South Africa, Nigeria, Zambia, and Uganda are the leading soybean producers in SSA. Soybean research in SSA is conducted by international and national research institutions, including IITA, national soybean improvement programs, universities, and the private sector. Between 1970 and 2011, 195 soybean varieties were released by IITA, private breeders, and national soybean improvement programs in SSA. This paper reviews the history and current state of soybean production and of the utilization and adoption of tropical varieties in SSA, addresses the major soybean yield-limiting factors across the region, and discusses the potential of the soybean industry in SSA. It also highlights soybean improvement efforts and lessons learned from previous soybean improvement efforts and the current progress of some national soybean improvement programs in SSA. Opportunities for scaling up tropical soybean as a major crop across SSA countries are promising.展开更多
Sudan’s semi-arid land constitutes a diversity of habitats, species, and genetic resources of high ecological and economic value. This diversity is gradually degrading due to climate change and human misuse. Biodiver...Sudan’s semi-arid land constitutes a diversity of habitats, species, and genetic resources of high ecological and economic value. This diversity is gradually degrading due to climate change and human misuse. Biodiversity monitoring began in Sudan before independence when a considerable number of flora and fauna species were identified. Insects were among the identified fauna where many orders, families, and species were classified especially those of economic, medicinal, and veterinary importance. Bombyliidae or bee flies are considered native to African countries and confined to the semi-arid ecosystem as pollinators of higher plants. The bee fly, Eurycarenus dichopticus recorded from these ecosystems, has gained little attention, and meager data on its biology and reproduction have been published. Adults of this insect are nectar feeders, and females also feed on pollen grains while larvae are parasitoids on certain insects. This study was conducted in three Sudanese states that lie within the semi-arid ecosystem;Khartoum, Gezira, and North Kordofan. Field surveys were conducted in these states and insect fauna was obtained and identified. Bee fly specimens were collected from North Kordofan using the butterfly net method. The specimens were then preserved and sent to the Agricultural Research Corporation ARC in (2020) where they were identified as Eurycarenus dichopticus Bezzi (Diptera: Bombyliidae) which is the first report in North Kordofan. This identification may contribute to the understanding of its ecological significance and role.展开更多
A field experiment was conducted at Hudeiba Research Station Farm, located at Ed-Damer, Sudan during 2011/2012 and 2012/2013 winter seasons to investigate the effect of different irrigation regimes and varieties on ch...A field experiment was conducted at Hudeiba Research Station Farm, located at Ed-Damer, Sudan during 2011/2012 and 2012/2013 winter seasons to investigate the effect of different irrigation regimes and varieties on chickpea (Cicer arietinum L.) yield, yield components and water productivity. The treatments include three irrigation regimes;irrigation every 10 days (I1 = full irrigation), irrigation every 15 days (I2 = moderate stress) and irrigation every 20 days (I3 = severe stress) and two varieties (Borgieg and Wad Hamid). The treatments were arranged in factorial randomized complete block design (RCBD) with 3 replications. Irrigation water being applied, grain yield, yield components (number of pods per plant, number of seeds per pod and the 100 seeds weight) and crop water productivity (CWP) and irrigation water productivity (IWP) were recorded. Results showed that the number of pods per plant, number of seeds per pod, 100-seeds weight, grain yield and irrigation water applied were significantly (p ≤ 0.001) affected by irrigation regimes. The highest values of these traits obtained with full irrigation, whereas the lowest values were recorded under severe water stress conditions. Results also indicated that, moderate and severe water stress regimes saved irrigation water by 24% and 32%, respectively compared with full irrigation. This study indicated that treatment I1 which was irrigated every 10-days did not produce the highest IWP, while treatment I2 which irrigated every 15-days gave the highest IWP. The lowest IWP occurred at severe water stress regime (I3). It could be concluded that moderate water stress might be adopted. Contrarily, the adoption of severe water stressed that produce high water savings would lead to yield losses that might be economically not acceptable. The late maturing chickpea variety of Borgieg significantly (p ≤ 0.05) out-yielded the early maturing variety Wad Hamid by 11%. Borgieg displayed the highest values of CWP and IWP.展开更多
Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted enviro...Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted environmental stresses are becoming significant threats to sustainable cotton production,ultimately leading to a substantial irreversible economic loss.Mitogen-activated protein kinase(MAPK)is generally considered essential for recognizing environmental stresses through phosphorylating downstream signal pathways and plays a vital role in numerous biological processes.Results:We have identified 74 MAPK genes across cotton,41 from G.hirsutum,19 from G.raimondii,whereas 14 have been identified from G.arboreum.The MAPK gene-proteins have been further studied to determine their physicochemical characteristics and other essential features.In this perspective,characterization,phylogenetic relationship,chromosomal mapping,gene motif,cis-regulatory element,and subcellular localization were carried out.Based on phylogenetic analysis,the MAPK family in cotton is usually categorized as A,B,C,D,and E clade.According to the results of the phylogenic relationship,cotton has more MAPKS genes in Clade A than Clade B.The cis-elements identified were classified into five groups(hormone responsiveness,light responsiveness,stress responsiveness,cellular development,and binding site).The prevalence of such elements across the promoter region of these genes signifies their role in the growth and development of plants.Seven GHMAPK genes(GH_A07G1527,GH_D02G1138,GH_D03G0121,GH_D03G1517,GH_D05G1003,GH_D11G0040,and GH_D12G2528)were selected,and specific tissue expression and profiling were performed across drought and salt stresses.Results expressed that six genes were upregulated under drought treatment except for GH_D11G0040 which is downregulated.Whereas all the seven genes have been upregulated at various hours of salt stress treatment.Conclusions:RNA sequence and qPCR results showed that genes as differentially expressed across both vegetative and reproductive plant parts.Similarly,the qPCR analysis showed that six genes had been upregulated substantially through drought treatment while all the seven genes were upregulated across salt treatments.The results of this study showed that cotton GHMPK3 genes play an important role in improving cotton resistance to drought and salt stresses.MAPKs are thought to play a significant regulatory function in plants’responses to abiotic stresses according to various studies.MAPKs’involvement in abiotic stress signaling and innovation is a key goal for crop species research,especially in crop breeding.展开更多
Stability analysis of grain yield is an efficient tool for the selection of varieties adapted to fairly wide cultivation zone. A study aims to determine adaptability and stability for grain yield and agronomic perform...Stability analysis of grain yield is an efficient tool for the selection of varieties adapted to fairly wide cultivation zone. A study aims to determine adaptability and stability for grain yield and agronomic performance of 10 elite Doubled Haploid (DH) rice genotypes generated through another culture technique, along with local cultivar Umgar as a check under irrigated lowland conditions in three different environments in the central clay plains of the Sudan;during two cropping seasons 2019 and 2020. The trials were conducted in a randomized complete block design with three replications. Grain yield stability was studied, using the Additive Main effect and Multiplicative Interaction (AMMI) model. Bi-plots were developed following GGE bi-plot methodology over the six environments. The combined analysis of variance revealed significant to highly significant (P < 0.001) effects of genotypes, environments, and genotype by environment interaction. Moreover, the analysis of variance based on AMMI indicated significant genotypes, environments, and GE interaction with a total variation of 43.16%, 44.26% and 12.58% respectively. A biplot-AMMI analysis and yield stability index incorporating the AMMI stability value and yield in a single non-parametric index were used to identify the genotypes with the highest and stable yield. The overall mean for grain yield was 5.69 t/ha, with a range of 5.77 to 4.12 t/ha. The genotypes k150147, k150870, k150032, k150912, and k150307 out yielded the local check Umgar by 40%, 38%, 34%, 34% and 33% respectively. The most genotypes were mid-early maturities which were harvested at 107, 113, 108, 109 and 112 days after sowing, respectively. These five genotypes also showed grain yield stability along with their high mean yield performance according to the AMMI analysis and widely adaptable to the tested locations. Therefore, the five out yielding genotypes will be considered for cultivation under irrigated system condition in central clay in the Sudan.展开更多
The development of new rice varieties is highly dependent on genetic diversity in desirable agronomic traits. Therefore, this study aimed to identify potential genotypes having the characters of Korean varieties (Tong...The development of new rice varieties is highly dependent on genetic diversity in desirable agronomic traits. Therefore, this study aimed to identify potential genotypes having the characters of Korean varieties (Tongil-type) and japonica developed through doubled haploid (DH) technology to apply in our breeding materials. 35 elite DH lines derived from another culture of Korean and African rice along with two local checks were planted in a randomized complete block design with three replications during the two seasons of 2019 and 2020. All evaluated genotypes exhibited a wide and significant variation in the ten measured traits. The highest heritability related to high genetic advance was recorded for the number of tiller/plant, grain yield t/ha, number of filled grain per panicle, and thousand grain weights (g). Genotypic coefficient of variation and genetic advance were recorded for number of tiller/plant, number of filled grain per panicle, 1000 grain weight and grain yield t/ha in both seasons. Moreover, there was a highly significant and positive correlation of grain yield with number of filled grain per panicle (0.65), number of tiller/plant (0.64) and number of panicle per m<sup>2</sup> (0.54). Cluster analysis based on grain yield components trait grouped the 37 rice genotypes into four clusters. Cluster B was the largest and consisted of 13 genotypes. Finally, it could be concluded that, based on number of productive tillers, number of filled grain/panicle, number of panicle per m<sup>2</sup>, and grain yield, the lines KF170506, KF170509, KF170542, KF170530, KF170543, KF170500 and KF170510 were high potential for further selection for new type of irrigated rice. In addition, hybridization of these 7 high-yielding could be used to achieve higher heterosis among the genotypes. Furthermore, this evaluation could be useful in developing reliable selection indices for improving rice breeding programs.展开更多
The REGWQ (Ryan-Einot-Gabriel-Welsch and Quiot) test produces allow us to compare a large numbers of data while controlling the probability of making at least one Type I error or Family wise error. The purpose of th...The REGWQ (Ryan-Einot-Gabriel-Welsch and Quiot) test produces allow us to compare a large numbers of data while controlling the probability of making at least one Type I error or Family wise error. The purpose of this study was to use the REGWQ multiple comparisons test of qualitative data. Okra characterization data was applied and submitted to ANOVA (P_0.05) with REGWQ for multiple comparisons of the means. The results of this study establish a summary strategy of following a significant ANOVA F with REGWQ test on multiple comparisons of means in summation a large entries/treatments to the small groups when variances are heterogeneous. Cluster analysis should be especially useful for grouping qualitative treatment and could also be used in conjunction of with REFWQ multiple produces. The development of study will be in REGWQ multiple producers in SAS option for distributed the large number of treatment to small group with summering the best choice of treatments.展开更多
基金supported by the Agricultural Science and Technology Innovation Program of CAAS and China Agriculture Research System (CARS-04) awarded to T.Han of CAAS and S.E.Ibrahim of Agricultural Research Corporation(ARC)Soybean Research Program,Wad Medani,Sudan
文摘Soybean(Glycine max(L.) Merr.) is a non-native and non-staple crop in sub-Saharan Africa(SSA) with potential to be a commercial crop owing to its wide range of uses as food, feed,and industrial raw material. Soybean was first introduced to SSA by Chinese traders in the19 th century and was cultivated as an economic crop as early as 1903 in South Africa. In the past four decades, soybean cultivation area and production in SSA has increased exponentially, from about 20,000 ha and 13,000 t in the early 1970 s to 1,500,000 ha and2,300,000 t in 2016. Soybean yield has been stagnant in SSA for decades at about 1.1 t ha^(-1),much lower than the world average, representing one of the most challenging issues in the soybean industry in SSA. The low soybean yield in SSA can be attributed to the use of poorperforming varieties and to the limited application of fertilizers and rhizobial inoculants in soils with no history of soybean production. South Africa, Nigeria, Zambia, and Uganda are the leading soybean producers in SSA. Soybean research in SSA is conducted by international and national research institutions, including IITA, national soybean improvement programs, universities, and the private sector. Between 1970 and 2011, 195 soybean varieties were released by IITA, private breeders, and national soybean improvement programs in SSA. This paper reviews the history and current state of soybean production and of the utilization and adoption of tropical varieties in SSA, addresses the major soybean yield-limiting factors across the region, and discusses the potential of the soybean industry in SSA. It also highlights soybean improvement efforts and lessons learned from previous soybean improvement efforts and the current progress of some national soybean improvement programs in SSA. Opportunities for scaling up tropical soybean as a major crop across SSA countries are promising.
文摘Sudan’s semi-arid land constitutes a diversity of habitats, species, and genetic resources of high ecological and economic value. This diversity is gradually degrading due to climate change and human misuse. Biodiversity monitoring began in Sudan before independence when a considerable number of flora and fauna species were identified. Insects were among the identified fauna where many orders, families, and species were classified especially those of economic, medicinal, and veterinary importance. Bombyliidae or bee flies are considered native to African countries and confined to the semi-arid ecosystem as pollinators of higher plants. The bee fly, Eurycarenus dichopticus recorded from these ecosystems, has gained little attention, and meager data on its biology and reproduction have been published. Adults of this insect are nectar feeders, and females also feed on pollen grains while larvae are parasitoids on certain insects. This study was conducted in three Sudanese states that lie within the semi-arid ecosystem;Khartoum, Gezira, and North Kordofan. Field surveys were conducted in these states and insect fauna was obtained and identified. Bee fly specimens were collected from North Kordofan using the butterfly net method. The specimens were then preserved and sent to the Agricultural Research Corporation ARC in (2020) where they were identified as Eurycarenus dichopticus Bezzi (Diptera: Bombyliidae) which is the first report in North Kordofan. This identification may contribute to the understanding of its ecological significance and role.
文摘A field experiment was conducted at Hudeiba Research Station Farm, located at Ed-Damer, Sudan during 2011/2012 and 2012/2013 winter seasons to investigate the effect of different irrigation regimes and varieties on chickpea (Cicer arietinum L.) yield, yield components and water productivity. The treatments include three irrigation regimes;irrigation every 10 days (I1 = full irrigation), irrigation every 15 days (I2 = moderate stress) and irrigation every 20 days (I3 = severe stress) and two varieties (Borgieg and Wad Hamid). The treatments were arranged in factorial randomized complete block design (RCBD) with 3 replications. Irrigation water being applied, grain yield, yield components (number of pods per plant, number of seeds per pod and the 100 seeds weight) and crop water productivity (CWP) and irrigation water productivity (IWP) were recorded. Results showed that the number of pods per plant, number of seeds per pod, 100-seeds weight, grain yield and irrigation water applied were significantly (p ≤ 0.001) affected by irrigation regimes. The highest values of these traits obtained with full irrigation, whereas the lowest values were recorded under severe water stress conditions. Results also indicated that, moderate and severe water stress regimes saved irrigation water by 24% and 32%, respectively compared with full irrigation. This study indicated that treatment I1 which was irrigated every 10-days did not produce the highest IWP, while treatment I2 which irrigated every 15-days gave the highest IWP. The lowest IWP occurred at severe water stress regime (I3). It could be concluded that moderate water stress might be adopted. Contrarily, the adoption of severe water stressed that produce high water savings would lead to yield losses that might be economically not acceptable. The late maturing chickpea variety of Borgieg significantly (p ≤ 0.05) out-yielded the early maturing variety Wad Hamid by 11%. Borgieg displayed the highest values of CWP and IWP.
基金funded by National Key R&D Program of China(2020YFD1001004).
文摘Background:The cotton crop is universally considered as protein and edible oil source besides the major contributor of natural fiber and is grown in tropical and subtropical regions around the world Unpredicted environmental stresses are becoming significant threats to sustainable cotton production,ultimately leading to a substantial irreversible economic loss.Mitogen-activated protein kinase(MAPK)is generally considered essential for recognizing environmental stresses through phosphorylating downstream signal pathways and plays a vital role in numerous biological processes.Results:We have identified 74 MAPK genes across cotton,41 from G.hirsutum,19 from G.raimondii,whereas 14 have been identified from G.arboreum.The MAPK gene-proteins have been further studied to determine their physicochemical characteristics and other essential features.In this perspective,characterization,phylogenetic relationship,chromosomal mapping,gene motif,cis-regulatory element,and subcellular localization were carried out.Based on phylogenetic analysis,the MAPK family in cotton is usually categorized as A,B,C,D,and E clade.According to the results of the phylogenic relationship,cotton has more MAPKS genes in Clade A than Clade B.The cis-elements identified were classified into five groups(hormone responsiveness,light responsiveness,stress responsiveness,cellular development,and binding site).The prevalence of such elements across the promoter region of these genes signifies their role in the growth and development of plants.Seven GHMAPK genes(GH_A07G1527,GH_D02G1138,GH_D03G0121,GH_D03G1517,GH_D05G1003,GH_D11G0040,and GH_D12G2528)were selected,and specific tissue expression and profiling were performed across drought and salt stresses.Results expressed that six genes were upregulated under drought treatment except for GH_D11G0040 which is downregulated.Whereas all the seven genes have been upregulated at various hours of salt stress treatment.Conclusions:RNA sequence and qPCR results showed that genes as differentially expressed across both vegetative and reproductive plant parts.Similarly,the qPCR analysis showed that six genes had been upregulated substantially through drought treatment while all the seven genes were upregulated across salt treatments.The results of this study showed that cotton GHMPK3 genes play an important role in improving cotton resistance to drought and salt stresses.MAPKs are thought to play a significant regulatory function in plants’responses to abiotic stresses according to various studies.MAPKs’involvement in abiotic stress signaling and innovation is a key goal for crop species research,especially in crop breeding.
文摘Stability analysis of grain yield is an efficient tool for the selection of varieties adapted to fairly wide cultivation zone. A study aims to determine adaptability and stability for grain yield and agronomic performance of 10 elite Doubled Haploid (DH) rice genotypes generated through another culture technique, along with local cultivar Umgar as a check under irrigated lowland conditions in three different environments in the central clay plains of the Sudan;during two cropping seasons 2019 and 2020. The trials were conducted in a randomized complete block design with three replications. Grain yield stability was studied, using the Additive Main effect and Multiplicative Interaction (AMMI) model. Bi-plots were developed following GGE bi-plot methodology over the six environments. The combined analysis of variance revealed significant to highly significant (P < 0.001) effects of genotypes, environments, and genotype by environment interaction. Moreover, the analysis of variance based on AMMI indicated significant genotypes, environments, and GE interaction with a total variation of 43.16%, 44.26% and 12.58% respectively. A biplot-AMMI analysis and yield stability index incorporating the AMMI stability value and yield in a single non-parametric index were used to identify the genotypes with the highest and stable yield. The overall mean for grain yield was 5.69 t/ha, with a range of 5.77 to 4.12 t/ha. The genotypes k150147, k150870, k150032, k150912, and k150307 out yielded the local check Umgar by 40%, 38%, 34%, 34% and 33% respectively. The most genotypes were mid-early maturities which were harvested at 107, 113, 108, 109 and 112 days after sowing, respectively. These five genotypes also showed grain yield stability along with their high mean yield performance according to the AMMI analysis and widely adaptable to the tested locations. Therefore, the five out yielding genotypes will be considered for cultivation under irrigated system condition in central clay in the Sudan.
文摘The development of new rice varieties is highly dependent on genetic diversity in desirable agronomic traits. Therefore, this study aimed to identify potential genotypes having the characters of Korean varieties (Tongil-type) and japonica developed through doubled haploid (DH) technology to apply in our breeding materials. 35 elite DH lines derived from another culture of Korean and African rice along with two local checks were planted in a randomized complete block design with three replications during the two seasons of 2019 and 2020. All evaluated genotypes exhibited a wide and significant variation in the ten measured traits. The highest heritability related to high genetic advance was recorded for the number of tiller/plant, grain yield t/ha, number of filled grain per panicle, and thousand grain weights (g). Genotypic coefficient of variation and genetic advance were recorded for number of tiller/plant, number of filled grain per panicle, 1000 grain weight and grain yield t/ha in both seasons. Moreover, there was a highly significant and positive correlation of grain yield with number of filled grain per panicle (0.65), number of tiller/plant (0.64) and number of panicle per m<sup>2</sup> (0.54). Cluster analysis based on grain yield components trait grouped the 37 rice genotypes into four clusters. Cluster B was the largest and consisted of 13 genotypes. Finally, it could be concluded that, based on number of productive tillers, number of filled grain/panicle, number of panicle per m<sup>2</sup>, and grain yield, the lines KF170506, KF170509, KF170542, KF170530, KF170543, KF170500 and KF170510 were high potential for further selection for new type of irrigated rice. In addition, hybridization of these 7 high-yielding could be used to achieve higher heterosis among the genotypes. Furthermore, this evaluation could be useful in developing reliable selection indices for improving rice breeding programs.
文摘The REGWQ (Ryan-Einot-Gabriel-Welsch and Quiot) test produces allow us to compare a large numbers of data while controlling the probability of making at least one Type I error or Family wise error. The purpose of this study was to use the REGWQ multiple comparisons test of qualitative data. Okra characterization data was applied and submitted to ANOVA (P_0.05) with REGWQ for multiple comparisons of the means. The results of this study establish a summary strategy of following a significant ANOVA F with REGWQ test on multiple comparisons of means in summation a large entries/treatments to the small groups when variances are heterogeneous. Cluster analysis should be especially useful for grouping qualitative treatment and could also be used in conjunction of with REFWQ multiple produces. The development of study will be in REGWQ multiple producers in SAS option for distributed the large number of treatment to small group with summering the best choice of treatments.