Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture. Cell division and elongation form the internode of soybean and result in different...Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture. Cell division and elongation form the internode of soybean and result in different plant heights and lodging resistance. Yet the mechanisms behind are unclear in soybean. To elucidate the mechanism of the concentration difference of auxin related to stem development in soybean, samples of apical shoot, elongation zone, and mature zone from the developing stems of soybean seedlings, Charleston, were harvested and measured for auxin concentration distributions and metabolites to identify the common underlying mechanisms responsible for concentration difference of auxin. Distribution of indole-3-acetic acid(IAA), indole-3-butyric acid(IBA), and methylindole-3-acetic acid(Me-IAA) were determined and auxin concentration distributions were found to have a complex regulation mechanism. The concentrations of IAA and Me-IAA in apical shoot were significantly different between elongation zone and mature zone resulting in an IAA gradient. Tryptophan dependent pathway from tryptamine directly to IAA or through indole-3-acetonitrile to IAA and from indole-3-propionic acid(IPA) to IAA were three primary IAA synthesis pathways. Moreover, some plant metabolites from flavonoid and phenylpropanoid synthesis pathways showed similar or reverse gradient and should involve in auxin homeostasis and concentration difference. All the data give the first insight in the concentration difference and homeostasis of auxin in soybean seedlings and facilitate a deeper understanding of the molecular mechanism of stem development and growth. The gathered information also helps to elucidate how plant height is formed in soybean and what strategy should be adopted to regulate the lodging resistance in soybean.展开更多
This study discusses factors affecting various processes involved in bioremediation coupled with electrokinetics. The study presents innovative solutions, and proposes new directions. Environmental conditions that hav...This study discusses factors affecting various processes involved in bioremediation coupled with electrokinetics. The study presents innovative solutions, and proposes new directions. Environmental conditions that have an influence on the characteristics, behavior, and metabolism of indigenous microorganisms are presented. The discussion focuses on overcoming the unfavorable conditions created by electrolysis reactions, prolongation the survival of the microbes at contaminated sites, increase of microbial enzyme secretion, improvement of the indigenous bacteria metabolic pathways, and exploration of metagenomics resources from soil biota. The challenge facing the implementation of conventional bioremediation techniques in precisely and effectively delivering nutrients to indigenous bacteria, particularly in soils with tortuous paths and low hydraulic conductivity is discussed. Current knowledge in application of enhanced biostimulation using electrokinetics is reviewed. The implementation of bioaugmentation in bioremediation coupled with electrokinetics to enhance the outcome of bioremediation is presented. Effects of phenomena associated with electrokinetics in the hybrid remediation approach are discussed.展开更多
Alfalfa (Medicago sativa L.) is an important leguminous crop worldwide and it has important roles in different aspects of the agriculture system, including livestock feed, crop soil conservation, and improvement of so...Alfalfa (Medicago sativa L.) is an important leguminous crop worldwide and it has important roles in different aspects of the agriculture system, including livestock feed, crop soil conservation, and improvement of soil nitrogen supply. As a perennial crop, alfalfa breeding for trait improvement takes longer periods of time compared to many other crops, therefore, genetic engineering is a faster route for alfalfa trait modification and improvement. Alfalfa was a first crop in which somatic embryogenesis was developed. Alfalfa was also a pioneering crop in which transgenic technology was developed and applied for trait improvement. Transgenic technology in alfalfa has since advanced steadily in various areas. In this review, we update the recent research progress in alfalfa genetic engineering, focusing on genetic transformation and use of transgenic technology for trait improvement and new trait development.展开更多
The rice Wsi18 promoter confers drought-inducible gene expression. This property makes it a useful candidate to drive relevant genes for developing drought resistant traits for different monocot crops. In this study, ...The rice Wsi18 promoter confers drought-inducible gene expression. This property makes it a useful candidate to drive relevant genes for developing drought resistant traits for different monocot crops. In this study, we showed that the Bradi2G47700 gene, the closest homologue to rice Wsi18, was upregulated in Brachypodium distachyon plants exposed to ABA and mannitol. Wsi18: uidA transgenic B. distachyon plants were produced and then subjected to ABA or mannitol treatment. The expression of uidA in three transgenic lines (line 10, 18 and 37) was significantly upregulated in plants exposed to ABA (fold increases of 5.61 ± 0.98, 2.88 ± 0.75 and 9.13 ± 1.96, respectively) compared to the same transgenic plant lines without treatment. The expression of uidA in two transgenic lines (lines 18 and 37) also showed upregulation when treated with mannitol (fold increases of 4.43 ± 1.07 and 8.47 ± 2.90, respectively) compared to the same transgenic plant lines without mannitol treatment. Moreover, GUS histochemical assay showed increased Wsi18 promoter activity in the leaves and stems of transgenic lines upon treatment with ABA or mannitol. This is the first report of the drought inducible rice Wsi18 promoter being active in B. distachyon which is a model plant for molecular biology research of various monocot plants. Taken together, the results indicate that the Wsi18 promoter and its homologue may be explored as a useful tool for drought stress-inducible gene expression in different monocot crops.展开更多
Glyphosate (N-phosphonomethyl glycine) is the most used herbicide worldwide. The degradation of ^14C-labeled glyphosate was studied under controlled laboratory conditions in three different agricultural soils: a si...Glyphosate (N-phosphonomethyl glycine) is the most used herbicide worldwide. The degradation of ^14C-labeled glyphosate was studied under controlled laboratory conditions in three different agricultural soils: a silt clay loam, a clay loam and a sandy loam soil. The kinetic and intensity of glyphosate degradation varied considerably over time within the same soil and among different types of soil. Our results demonstrated that the mineralization rate of glyphosate was high at the beginning of incubation and then decreased with time until the end of the experiment. The same kinetic was observed for the water extractable residues. The degradation of glyphosate was rapid in the soil with low adsorption capacity (clay loam soil) with a short half-life of 4 days. However, the persistence of glyphosate in high adsorption capacity soils increased, with half-live of 19 days for silt clay loam soil and 14.5 days for sandy loam soil. HPLC analyses showed that the main metabolite of glyphosate, arninomethylphosphonic acid (AMPA) was detected after three days of incubation in the extracts of all three soils. Our results suggested that the possibility of contamination of groundwater by glyphosate was high on a long-term period in soils with high adsorption capacity and low degrading activities and/or acid similar to sandy loam soil. This risk might be faster but less sustainable in soil with low adsorption capacity and high degrading activity like the clay loam soil. However, the release of non-extractable residues may increase the risk of contamination of groundwater regardless of the type of soil.展开更多
Multiple viral infections in insect vectors with synergistic effects are common in nature,but the underlying mechanism remains elusive.Here,we find that rice gall dwarf reovirus(RGDV)facilitates the transmission of ri...Multiple viral infections in insect vectors with synergistic effects are common in nature,but the underlying mechanism remains elusive.Here,we find that rice gall dwarf reovirus(RGDV)facilitates the transmission of rice stripe mosaic rhabdovirus(RSMV)by co-infected leafhopper vectors.RSMV nucleoprotein(N)alone activates complete anti-viral autophagy,while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy.In co-infected vectors,RSMVexploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction.Furthermore,RSMV could effectively propagate in Sf9 cells.Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux,finally facilitating RSMV propagation.In summary,these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly.展开更多
RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable ...RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable of restricting viruses in plants.Here,we show that the evolutionarily conserved Pelota–Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae(termed potyvirids),the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide.Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron,which is conserved in almost all potyvirids.This allows Pelota to target the virus and act as a viral restriction factor.Furthermore,Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta.Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation.These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants.展开更多
Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replic...Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replication.Based on current evidence,viral proteins are translated via viral+RNAs,whereas-RNA is considered to be a viral replication intermediate without coding capacity.Here,we report that plant and animal+ssRNA viruses contain small open reading frames(ORFs)in their-RNA(reverse ORFs[rORFs]).Using turnip mosaic virus(TuMV)as a model for plant+ssRNA viruses,we demonstrate that small proteins encoded by rORFs display specific subcellularlocalizations,and confirm the presence of rORF2 in infected cells through mass spectrometry analysis.The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes.The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase,and mutation of rORF2 completely abolishes virus infection,whereas ectopic expression of rORF2 rescues the mutant virus.Furthermore,we show that several rORFs in the-RNA of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)have the ability to suppress type l interferon production and facilitate the infection of ve-sicular stomatitis virus.In addition,we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs.Taken together,these findings indicate that the-RNA of+ssRNA vi-ruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection,revealing a viral proteome larger than previously thought.展开更多
The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species.The functional connection between the global regulation of gene expression and chrom...The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species.The functional connection between the global regulation of gene expression and chromatin-associatedSUMOylation in plant cells isunknown.Here,weuncovereda genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in Arabidopsis thaliana grown at room temperature,exposed to heat stress,and exposed to heat stress followed by recovery.The small ubiquitin-like modifier(SUMO)-associated chromatin sites,characterized by whole-genome ChIP-seq,were generally associated with active chromatin markers.In response to heat stress,chromatin-associated SUMO signals increased at promoter-transcriptional start site regions and decreased in gene bodies.RNAseq analysis supported the role of chromatin-associatedSUMOylation in transcriptional activation during rapid responses to high temperature.Changes inSUMOsignals on chromatinwere associated with the upregulation of heat-responsivegenesandthedownregulation ofgrowth-relatedgenes.Disruption of theSUMOligasegene SIZ1 abolished SUMOsignals on chromatin and attenuated rapid transcriptional responses to heat stress.The SUMO signal peaks were enriched in DNA elements recognized by distinct groups of transcription factors under different temperature conditions.These observations provide evidence that chromatin-associated SUMOylation regulates the transcriptional switch between development and heat stress response in plant cells.展开更多
基金financially supported by the National Natural Science Foundation of China(31571693)the earmarked fund for China Agriculture Research System(CARS-04-04B)。
文摘Auxin regulates cell division and elongation of the primordial cells through its concentration and then shaped the plant architecture. Cell division and elongation form the internode of soybean and result in different plant heights and lodging resistance. Yet the mechanisms behind are unclear in soybean. To elucidate the mechanism of the concentration difference of auxin related to stem development in soybean, samples of apical shoot, elongation zone, and mature zone from the developing stems of soybean seedlings, Charleston, were harvested and measured for auxin concentration distributions and metabolites to identify the common underlying mechanisms responsible for concentration difference of auxin. Distribution of indole-3-acetic acid(IAA), indole-3-butyric acid(IBA), and methylindole-3-acetic acid(Me-IAA) were determined and auxin concentration distributions were found to have a complex regulation mechanism. The concentrations of IAA and Me-IAA in apical shoot were significantly different between elongation zone and mature zone resulting in an IAA gradient. Tryptophan dependent pathway from tryptamine directly to IAA or through indole-3-acetonitrile to IAA and from indole-3-propionic acid(IPA) to IAA were three primary IAA synthesis pathways. Moreover, some plant metabolites from flavonoid and phenylpropanoid synthesis pathways showed similar or reverse gradient and should involve in auxin homeostasis and concentration difference. All the data give the first insight in the concentration difference and homeostasis of auxin in soybean seedlings and facilitate a deeper understanding of the molecular mechanism of stem development and growth. The gathered information also helps to elucidate how plant height is formed in soybean and what strategy should be adopted to regulate the lodging resistance in soybean.
文摘This study discusses factors affecting various processes involved in bioremediation coupled with electrokinetics. The study presents innovative solutions, and proposes new directions. Environmental conditions that have an influence on the characteristics, behavior, and metabolism of indigenous microorganisms are presented. The discussion focuses on overcoming the unfavorable conditions created by electrolysis reactions, prolongation the survival of the microbes at contaminated sites, increase of microbial enzyme secretion, improvement of the indigenous bacteria metabolic pathways, and exploration of metagenomics resources from soil biota. The challenge facing the implementation of conventional bioremediation techniques in precisely and effectively delivering nutrients to indigenous bacteria, particularly in soils with tortuous paths and low hydraulic conductivity is discussed. Current knowledge in application of enhanced biostimulation using electrokinetics is reviewed. The implementation of bioaugmentation in bioremediation coupled with electrokinetics to enhance the outcome of bioremediation is presented. Effects of phenomena associated with electrokinetics in the hybrid remediation approach are discussed.
文摘Alfalfa (Medicago sativa L.) is an important leguminous crop worldwide and it has important roles in different aspects of the agriculture system, including livestock feed, crop soil conservation, and improvement of soil nitrogen supply. As a perennial crop, alfalfa breeding for trait improvement takes longer periods of time compared to many other crops, therefore, genetic engineering is a faster route for alfalfa trait modification and improvement. Alfalfa was a first crop in which somatic embryogenesis was developed. Alfalfa was also a pioneering crop in which transgenic technology was developed and applied for trait improvement. Transgenic technology in alfalfa has since advanced steadily in various areas. In this review, we update the recent research progress in alfalfa genetic engineering, focusing on genetic transformation and use of transgenic technology for trait improvement and new trait development.
文摘The rice Wsi18 promoter confers drought-inducible gene expression. This property makes it a useful candidate to drive relevant genes for developing drought resistant traits for different monocot crops. In this study, we showed that the Bradi2G47700 gene, the closest homologue to rice Wsi18, was upregulated in Brachypodium distachyon plants exposed to ABA and mannitol. Wsi18: uidA transgenic B. distachyon plants were produced and then subjected to ABA or mannitol treatment. The expression of uidA in three transgenic lines (line 10, 18 and 37) was significantly upregulated in plants exposed to ABA (fold increases of 5.61 ± 0.98, 2.88 ± 0.75 and 9.13 ± 1.96, respectively) compared to the same transgenic plant lines without treatment. The expression of uidA in two transgenic lines (lines 18 and 37) also showed upregulation when treated with mannitol (fold increases of 4.43 ± 1.07 and 8.47 ± 2.90, respectively) compared to the same transgenic plant lines without mannitol treatment. Moreover, GUS histochemical assay showed increased Wsi18 promoter activity in the leaves and stems of transgenic lines upon treatment with ABA or mannitol. This is the first report of the drought inducible rice Wsi18 promoter being active in B. distachyon which is a model plant for molecular biology research of various monocot plants. Taken together, the results indicate that the Wsi18 promoter and its homologue may be explored as a useful tool for drought stress-inducible gene expression in different monocot crops.
基金DIREN, AERM and DRAF of Lorraine (France) for their financial support
文摘Glyphosate (N-phosphonomethyl glycine) is the most used herbicide worldwide. The degradation of ^14C-labeled glyphosate was studied under controlled laboratory conditions in three different agricultural soils: a silt clay loam, a clay loam and a sandy loam soil. The kinetic and intensity of glyphosate degradation varied considerably over time within the same soil and among different types of soil. Our results demonstrated that the mineralization rate of glyphosate was high at the beginning of incubation and then decreased with time until the end of the experiment. The same kinetic was observed for the water extractable residues. The degradation of glyphosate was rapid in the soil with low adsorption capacity (clay loam soil) with a short half-life of 4 days. However, the persistence of glyphosate in high adsorption capacity soils increased, with half-live of 19 days for silt clay loam soil and 14.5 days for sandy loam soil. HPLC analyses showed that the main metabolite of glyphosate, arninomethylphosphonic acid (AMPA) was detected after three days of incubation in the extracts of all three soils. Our results suggested that the possibility of contamination of groundwater by glyphosate was high on a long-term period in soils with high adsorption capacity and low degrading activities and/or acid similar to sandy loam soil. This risk might be faster but less sustainable in soil with low adsorption capacity and high degrading activity like the clay loam soil. However, the release of non-extractable residues may increase the risk of contamination of groundwater regardless of the type of soil.
基金supported by the National Natural Science Foundation of China(31920103014,31970160)the Natural Science Foundation of Fujian Province(2020J06015)。
文摘Multiple viral infections in insect vectors with synergistic effects are common in nature,but the underlying mechanism remains elusive.Here,we find that rice gall dwarf reovirus(RGDV)facilitates the transmission of rice stripe mosaic rhabdovirus(RSMV)by co-infected leafhopper vectors.RSMV nucleoprotein(N)alone activates complete anti-viral autophagy,while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy.In co-infected vectors,RSMVexploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction.Furthermore,RSMV could effectively propagate in Sf9 cells.Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux,finally facilitating RSMV propagation.In summary,these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly.
基金funded by the National Key Research and Development Program of China(2021YFD1400400)National Natural Science Foundation of China(31972244)to F.L.
文摘RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable of restricting viruses in plants.Here,we show that the evolutionarily conserved Pelota–Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae(termed potyvirids),the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide.Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron,which is conserved in almost all potyvirids.This allows Pelota to target the virus and act as a viral restriction factor.Furthermore,Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta.Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation.These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants.
基金funded by the National Key Research and Development Program of China(2021YFD1400400)to F.L.the National Natural Science Foundation of China(31930089 and 31972244)to X.Z.and F.L.+2 种基金a startup grant for High-level Talents of Fujian Medical University(XRCZX2019019)the Natural Science Foundation of Fujan Province,China(2020J01604)to Q.S.Work in the R.L.-D.lab is partially funded by the ERC-COG grant GemOmics(101044142)to R.L.-D.
文摘Positive-sense single-stranded RNA(+ssRNA)viruses,the most abundant viruses of eukaryotes in nature,require the synthesis of negative-sense RNA(-RNA)using their genomic(positive-sense)RNA(+RNA)as a template for replication.Based on current evidence,viral proteins are translated via viral+RNAs,whereas-RNA is considered to be a viral replication intermediate without coding capacity.Here,we report that plant and animal+ssRNA viruses contain small open reading frames(ORFs)in their-RNA(reverse ORFs[rORFs]).Using turnip mosaic virus(TuMV)as a model for plant+ssRNA viruses,we demonstrate that small proteins encoded by rORFs display specific subcellularlocalizations,and confirm the presence of rORF2 in infected cells through mass spectrometry analysis.The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes.The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase,and mutation of rORF2 completely abolishes virus infection,whereas ectopic expression of rORF2 rescues the mutant virus.Furthermore,we show that several rORFs in the-RNA of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)have the ability to suppress type l interferon production and facilitate the infection of ve-sicular stomatitis virus.In addition,we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs.Taken together,these findings indicate that the-RNA of+ssRNA vi-ruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection,revealing a viral proteome larger than previously thought.
基金supported by grants from the Natural Science Foundation of Guangdong(2018B030308002)the National Natural Science Foundation of China(31871222,31670286,31771504,and 31970531)+2 种基金the Guangdong YangFan Innovative and Entrepreneurial Research Team Project(2015YT02H032)the Program for Changjiang Scholarsthe Guangdong Special Support Program of Young Top-Notch Talent in Science and Technology Innovation(2019TQ05N651).
文摘The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species.The functional connection between the global regulation of gene expression and chromatin-associatedSUMOylation in plant cells isunknown.Here,weuncovereda genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in Arabidopsis thaliana grown at room temperature,exposed to heat stress,and exposed to heat stress followed by recovery.The small ubiquitin-like modifier(SUMO)-associated chromatin sites,characterized by whole-genome ChIP-seq,were generally associated with active chromatin markers.In response to heat stress,chromatin-associated SUMO signals increased at promoter-transcriptional start site regions and decreased in gene bodies.RNAseq analysis supported the role of chromatin-associatedSUMOylation in transcriptional activation during rapid responses to high temperature.Changes inSUMOsignals on chromatinwere associated with the upregulation of heat-responsivegenesandthedownregulation ofgrowth-relatedgenes.Disruption of theSUMOligasegene SIZ1 abolished SUMOsignals on chromatin and attenuated rapid transcriptional responses to heat stress.The SUMO signal peaks were enriched in DNA elements recognized by distinct groups of transcription factors under different temperature conditions.These observations provide evidence that chromatin-associated SUMOylation regulates the transcriptional switch between development and heat stress response in plant cells.