期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils 被引量:7
1
作者 YUAN Hong-zhao ZHU Zhen-ke +8 位作者 WEI Xiao-meng LIU Shou-long PENG Pei-qin Anna Gunina SHEN Jian-lin Yakov Kuzyakov GE Ti-da WU Jin-shui WANG Jiu-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第7期1474-1485,共12页
The application of straw and biochar is widely practiced for the improvement of soil fertility.However,its impact on microbial functional profiles,particularly with regard to paddy soils,is not well understood.The aim... The application of straw and biochar is widely practiced for the improvement of soil fertility.However,its impact on microbial functional profiles,particularly with regard to paddy soils,is not well understood.The aim of this study was to investigate the diversity of microbial carbon use patterns in paddy soils amended with straw or straw-derived biochar in a 3-year field experiment in fallow soil and at various development stages of a rice crop(i.e.,tillering and blooming).We applied the community level physiological profiling approach,with 15 substrates(sugars,carboxylic and amino acids,and phenolic acid).In general,straw application resulted in the greatest microbial functional diversity owing to the greater number of available C sources than in control or biochar plots.Biochar amendment promoted the use of α-ketoglutaric acid,the mineralization of which was higher than that of any other substrate.Principal component analyses indicated that microbial functional diversity in the biochar-amended soil was separated from those of the straw-amended and control soils.Redundancy analyses revealed that soil organic carbon content was the most important factor regulating the pattern of microbial carbon utilization.Rhizodeposition and nutrient uptake by rice plants modulated microbial functions in paddy soils and stimulated the microbial use of N-rich substances,such as amino acids.Thus,our results demonstrated that the functional diversity of microorganisms in organic amended paddy soils is affected by both physicochemical properties of amendment and plant growth stage. 展开更多
关键词 carbon metabolism MICROBIAL functional diversity BIOCHAR amendment PADDY soil MicroRespTM
下载PDF
Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improves rice grain yield,nutrient use efficiency and soil carbon sequestration
2
作者 XIE Jun Blagodatskaya EVGENIA +6 位作者 ZHANG Yu WAN Yu HU Qi-juan ZHANG Cheng-ming WANG Jie ZHANG Yue-qiang SHI Xiao-jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3345-3355,共11页
Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.However,the appropriate amount of straw to substitute for fertilizer remains unclear.A field experime... Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.However,the appropriate amount of straw to substitute for fertilizer remains unclear.A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties,soil organic carbon(SOC)storage,grain yield,yield components,nitrogen(N)use efficiency,phosphorus(P)use efficiency,N surplus,and P surplus after rice harvesting.Relative to mineral fertilization alone,straw substitution at 5 t ha^(-1)improved the number of spikelets per panicle,effective panicle,seed setting rate,1000-grain weight,and grain yield,and also increased the aboveground N and P uptake in rice.Straw substitution exceeding 2.5 t ha^(-1)increased the soil available N,P,and K concentrations as compared with mineral fertilization,and different amounts of straw substitution improved SOC storage compared with mineral fertilization.Furthermore,straw substitution at 5 t ha^(-1)decreased the N surplus and P surplus by up to 68.3 and 28.9%,respectively,compared to mineral fertilization.Rice aboveground N and P uptake and soil properties together contributed 19.3%to the variation in rice grain yield and yield components.Straw substitution at 5 t ha^(-1),an optimal fertilization regime,improved soil properties,SOC storage,grain yield,yield components,N use efficiency(NUE),and P use efficiency(PUE)while simultaneously decreasing the risk of environmental contamination. 展开更多
关键词 RICE SOC storage yield components N surplus P surplus
下载PDF
Multiscale assessment of ground,aerial and satellite spectral data for monitoring wheat grain nitrogen content
3
作者 Joel Segarra Fatima Zahra Rezzouk +5 位作者 Nieves Aparicio Jon González-Torralba Iker Aranjuelo Adrian Gracia-Romero Jose Luis Araus Shawn C.Kefauver 《Information Processing in Agriculture》 EI CSCD 2023年第4期504-522,共19页
Wheat grain quality characteristics have experienced increasing attention as a central factor affecting wheat end-use products quality and human health.Nonetheless,in the last decades a reduction in grain quality has ... Wheat grain quality characteristics have experienced increasing attention as a central factor affecting wheat end-use products quality and human health.Nonetheless,in the last decades a reduction in grain quality has been observed.Therefore,it is central to develop efficient quality-related phenotyping tools.In this sense,one of the most relevant wheat features related to grain quality traits is grain nitrogen content,which is directly linked to grain protein content and monitorable with remote sensing approaches.Moreover,the relation between nitrogen fertilization and grain nitrogen content(protein)plays a central role in the sustainability of agriculture.Both aiming to develop efficient phenotyping tools using remote sensing instruments and to advance towards a field-level efficient and sustainable monitoring of grain nitrogen status,this paper studies the efficacy of various sensors,multispectral and visible red-greenblue(RGB),at different scales,ground and unmanned aerial vehicle(UAV),and phenological stages(anthesis and grain filling)to estimate grain nitrogen content.Linear models were calculated using vegetation indices at each sensing level,sensor type and phenological stage.Furthermore,this study explores the up-scalability of the best performing model to satellite level Sentinel-2 equivalent data.We found that models built at the phenological stage of anthesis with UAV-level multispectral cameras using red-edge bands outperformed grain nitrogen content estimation(R2=0.42,RMSE=0.18%)in comparison with those models built with RGB imagery at ground and aerial level,as well as with those built with widely used ground-level multispectral sensors.We also demonstrated the possibility to use UAV-built multispectral linear models at the satellite scale to determine grain nitrogen content effectively(R2=0.40,RMSE=0.29%)at actual wheat fields. 展开更多
关键词 WHEAT Remote sensing Sentinel-2 Grain nitrogen content PHENOTYPING
原文传递
Soil Organic Carbon in a Changing World 被引量:7
4
作者 JIA Zhongjun Yakov KUZYAKOV +1 位作者 David MYROLD James TIEDJE 《Pedosphere》 SCIE CAS CSCD 2017年第5期789-791,共3页
Soil contains more than three times as much carbon (C) as either the atmosphere or terrestrial vegetation.Soil organic C (SOC) is essentially derived from inputs of plant and animal residues,which are processed by the... Soil contains more than three times as much carbon (C) as either the atmosphere or terrestrial vegetation.Soil organic C (SOC) is essentially derived from inputs of plant and animal residues,which are processed by the microbiota (bacteria,archaea,protists,fungi and viruses) that dominates SOC transformation and turnover in complex terrestrial environments.A 展开更多
关键词 土壤有机碳 世界 陆地植被 生物处理 古细菌 碳含量 SOC 微生物
原文传递
Responses of Soil Enzyme Activities and Microbial Community Composition to Moisture Regimes in Paddy Soils Under Long-Term Fertilization Practices 被引量:18
5
作者 LI Weitao WU Meng +5 位作者 LIU Ming JIANG Chunyu CHEN Xiaofen Yakov KUZYAKOV Jorg RINKLEBE LI Zhongpei 《Pedosphere》 SCIE CAS CSCD 2018年第2期323-331,共9页
The effects of fertilization on activity and composition of soil microbial community depend on nutrient and water availability;however,the combination of these factors on the response of microorganisms was seldom stud... The effects of fertilization on activity and composition of soil microbial community depend on nutrient and water availability;however,the combination of these factors on the response of microorganisms was seldom studied.This study investigated the responses of soil microbial community and enzyme activities to changes in moisture along a gradient of soil fertility formed within a long-term(24 years)field experiment.Soils(0–20 cm)were sampled from the plots under four fertilizer treatments:i)unfertilized control(CK),ii)organic manure(M),iii)nitrogen,phosphorus,and potassium fertilizers(NPK),and iv)NPK plus M(NPK+M).The soils were incubated at three moisture levels:constant submergence,five submerging-draining cycles(S-D cycles),and constant moisture content at 40%water-holding capacity(low moisture).Compared with CK,fertilization increased soil organic carbon(SOC) by 30.1%–36.3%,total N by 27.3%–38.4%,available N by 35.9%–56.4%,available P by 61.4%–440.9%,and total P by 28.6%–102.9%.Soil fertility buffered the negative effects of moisture on enzyme activities and microbial community composition.Enzyme activities decreased in response to submergence and S-D cycles versus low moisture.Compared with low moisture,S-D cycles increased total phospholipid fatty acids(PLFAs)and actinomycete,fungal,and bacterial PLFAs.The increased level of PLFAs in the unfertilized soil after five S-D cycles was greater than that in the fertilized soil.Variations in soil microbial properties responding to moisture separated CK from the long-term fertilization treatments.The coefficients of variation of microbial properties were negatively correlated with SOC,total P,and available N.Soils with higher fertility maintained the original microbial properties more stable in response to changes in moisture compared to low-fertility soil. 展开更多
关键词 microbial property PHOSPHOLIPID FATTY acids soil fertility SUBMERGENCE submerging-draining cycle
原文传递
Root exudate chemistry affects soil carbon mobilization via microbial community reassembly 被引量:5
6
作者 Tao Wen Guang-Hui Yu +7 位作者 Wen-Dan Hong Jun Yuan Guo-Qing Niu Peng-Hao Xie Fu-Sheng Sun Lao-Dong Guo Yakov Kuzyakov Qi-Rong Shen 《Fundamental Research》 CAS 2022年第5期697-707,共11页
Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeoc... Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeochemical cycling of nutrients,the effects of particular exudate species on soil carbon fluxes and key rhizosphere microorganisms remain unclear.By combining high-throughput sequencing,q-PCR,and NanoSIMS analyses,we characterized the bacterial community structure,quantified total bacteria depending on root exudate chemistry,and analyzed the consequences on the mobility of mineral-protected carbon.Using well-controlled incubation experiments,we showed that the three most abundant groups of root exudates(amino acids,carboxylic acids,and sugars)have contrasting effects on the release of dissolved organic carbon(DOC)and bioavailable Fe in an Ultisol through the disruption of organo-mineral associations and the alteration of bacterial communities,thus priming organic matter decomposition in the rhizosphere.High resolution(down to 50 nm)NanoSIMS images of mineral particles indicated that iron and silicon colocalized significantly more organic carbon following amino acid inputs than treatments without exudates or with carboxylic acids.The application of sugar strongly reduced microbial diversity without impacting soil carbon mobilization.Carboxylic acids increased the prevalence of Actinobacteria and facilitated carbon mobilization,whereas amino acid addition increased the abundances of Proteobacteria that prevented DOC release.In summary,root exudate functions are defined by their chemical composition that regulates bacterial community composition and,consequently,the biogeochemical cycling of carbon in the rhizosphere. 展开更多
关键词 Microbial community assembly NanoSIMS imaging Priming effects Root exudate chemistry Soil organic carbon Rhizosphere processes
原文传递
Positive intercropping effects on biomass production are species-specific and involve rhizosphere enzyme activities: Evidence from a field study 被引量:1
7
作者 Amit Kumar Evgenia Blagodaskaya +1 位作者 Michaela A.Dippold Vicky M.Temperton 《Soil Ecology Letters》 CAS 2022年第4期444-453,共10页
Less attention has been given to soil enzymes that contribute to beneficial rhizosphere interactions in intercropping systems.Therefore,we performed a field experiment by growing faba bean,lupine,and maize in mono and... Less attention has been given to soil enzymes that contribute to beneficial rhizosphere interactions in intercropping systems.Therefore,we performed a field experiment by growing faba bean,lupine,and maize in mono and mixed cultures in a moderately fertile soil.We measured shoot biomass and the kinetic parameters(maximal velocity(V max)and Michaelis-constant(K m))of three key enzymes in the rhizosphere:Leucine-aminopeptidase(LAP),β-1,4-N-acetylglucosaminidase(NAG),and phosphomonoesterase(PHO).Faba bean benefitted in mixed cultures by greater shoot biomass production with both maize and lupine compared to its expected biomass in monoculture.Next,LAP and NAG kinetic parameters were less responsive to mono and mixed cultures across the crop species.In contrast,both the V max and K m values of PHO increased in the faba bean rhizosphere when grown in mixed cultures with maize and lupine.A positive relative interaction index for shoot P and N uptake for faba bean showed its net facilitative interactions in the mixed cultures.Overall,these results suggest that over-productivity in intercropping is crop-specific and the positive intercropping effects could be modulated by P availability.We argue that the enzyme activities involved in nutrient cycling should be incorporated in further research. 展开更多
关键词 Enzyme kinetic parameters Phosphorus mobilization Nitrogen fixation Niche complementarity Biomass increase Relative interaction index
原文传递
Compositional variations of active autotrophic bacteria in paddy soils with elevated CO_(2) and temperature 被引量:1
8
作者 Chen Zhu Ning Ling +6 位作者 Ling Li Xiaoyu Liu Michaela A.Dippold Xuhui Zhang Shiwei Guo Yakov Kuzyakov Qirong Shen 《Soil Ecology Letters》 CAS 2020年第4期295-307,共13页
Global warming is an increasingly serious ecological problem,we examined how the active autotrophic microbes in paddy soils respond to the elevated CO_(2) and temperature.Here we employed stable isotope probing(SIP)to... Global warming is an increasingly serious ecological problem,we examined how the active autotrophic microbes in paddy soils respond to the elevated CO_(2) and temperature.Here we employed stable isotope probing(SIP)to label the active bacteria using the soil samples from a fully factorial Simulated Climate Change(SCC)field experiment where soils were exposed to ambient CO_(2) and temperature,elevated temperature,elevated CO_(2),and both elevated CO_(2) and temperature.Around 28.9% of active OTUs belonged to ammonia-oxidizing bacteria(AOB)and nitrite-oxidizing bacteria(NOB).Nitrosospira taxa was dominant in all soils and 80.4% of carbon-fixing bacteria under elevated temperature were classified as Nitrosomonas nitrosa.While no labeled NOBs were detected when temperature or CO_(2) were elevated independently,diverse NOBs were detected in the ambient conditions.We found that elevated CO_(2) and temperature had contrasting effects on microbial community composition,while relatively small changes were observed when CO_(2) and temperature were elevated simultaneously.Summarily these results suggest that carbon-fixing bacteria can respond positively to elevated CO_(2) concentrations,but when it’s accompanied with increase in the temperature this positive response could be weakened.Multiple abiotic factors thus need to be considered when predicting how microbial communities will respond to multiple climatic factors. 展开更多
关键词 Climate change Paddy soil Ammonia-oxidizing bacteria Nitrite-oxidizing bacteria Stable isotope probing Microbial community
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部