Until relatively recently, little has been done of effective technique “zero effluent” to conserve energy and water. Tannery wastewater is known as complex characteristics. In this study batch electrocoagulation exp...Until relatively recently, little has been done of effective technique “zero effluent” to conserve energy and water. Tannery wastewater is known as complex characteristics. In this study batch electrocoagulation experiments were carried out to assess the removal of color and chemical oxygen demand (COD) from tannery wastewater using two types of electrode materials: aluminum and iron. The effects of current density, electrolysis time and initial pH were investigated for tannery wastewater. Therefore, the operating costs for each electrode have been calculated. Based on results, it can be concluded that iron is tremendous to aluminum as electrode material, from COD removal and energy consumption views. All the conclusions of the study revealed that treatment of tannery by EC can be applied as a step of a hybrid treatment.展开更多
The present study is based on the investigation of performance of C,N-bipyrazole receptor grafted onto silica surface (SG2P) of adsorption Arsenic (AS) from aqueous solutions. The effects of operating parameters that ...The present study is based on the investigation of performance of C,N-bipyrazole receptor grafted onto silica surface (SG2P) of adsorption Arsenic (AS) from aqueous solutions. The effects of operating parameters that include pH, contact time, concentration of As and dosage of adsorbent on adsorption were accomplished. The results clearly showed that the removal efficiency of As was decreased with an increasing of As concentration, pH, and temperature, while it was continuously increasing with time and adsorbent dose. Moreover, the removal efficiency of Cr (VI) adsorption was 75% corresponding to pH;temperature (°C), initial concentration (ppm) and weight of dose (g) were 6, 25, and 0.04 respectively at 24 hours. The adsorption capacity of the synthesized sorbent (SG2P) for arsenic at pH Escherichia coli (ATCC25922) and Staphylococcus aureus (ATCC25932) were as a reference strains, while, the SG2P was able to inhibit growth only at high concentration (MIC = 1.5625 mg/ml).展开更多
文摘Until relatively recently, little has been done of effective technique “zero effluent” to conserve energy and water. Tannery wastewater is known as complex characteristics. In this study batch electrocoagulation experiments were carried out to assess the removal of color and chemical oxygen demand (COD) from tannery wastewater using two types of electrode materials: aluminum and iron. The effects of current density, electrolysis time and initial pH were investigated for tannery wastewater. Therefore, the operating costs for each electrode have been calculated. Based on results, it can be concluded that iron is tremendous to aluminum as electrode material, from COD removal and energy consumption views. All the conclusions of the study revealed that treatment of tannery by EC can be applied as a step of a hybrid treatment.
文摘The present study is based on the investigation of performance of C,N-bipyrazole receptor grafted onto silica surface (SG2P) of adsorption Arsenic (AS) from aqueous solutions. The effects of operating parameters that include pH, contact time, concentration of As and dosage of adsorbent on adsorption were accomplished. The results clearly showed that the removal efficiency of As was decreased with an increasing of As concentration, pH, and temperature, while it was continuously increasing with time and adsorbent dose. Moreover, the removal efficiency of Cr (VI) adsorption was 75% corresponding to pH;temperature (°C), initial concentration (ppm) and weight of dose (g) were 6, 25, and 0.04 respectively at 24 hours. The adsorption capacity of the synthesized sorbent (SG2P) for arsenic at pH Escherichia coli (ATCC25922) and Staphylococcus aureus (ATCC25932) were as a reference strains, while, the SG2P was able to inhibit growth only at high concentration (MIC = 1.5625 mg/ml).