Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treat...Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treatment of solid Ni-Co glycerate nanospheres followed by phosphorization is delivered to synthesize hierarchical Ni Co P hollow nanoflowers with ultrathin nanosheet assembly.The microstructure of Ni Co P can be availably tailored by adjusting the hydrothermal treatment temperature through affecting the hydrolysis process of Ni-Co glycerate nanospheres and the occurred Kirkendall effect.Benefitting from the promoted exposure of active sites and affluent mass diffusion routes,the HER performance of the Ni Co P hollow nanoflowers has been obviously enhanced in contrast with the solid Ni Co P nanospheres.The fabricated Ni Co P hollow nanoflowers yield the current density of 10 m A cmà2at small overpotentials of 95 and 127 m V in 0.5 mol Là1H2SO4and 1.0 mol Là1KOH solution,respectively.Moreover,the two-electrode alkaline cell assembled with the Ni Co P and Ir/C catalysts exhibits sustainable stability for overall water splitting.The work provides a simple but efficient method to regulate the microstructure of transition metal phosphides,which is helpful for achieving high-performance hydrogen evolution catalysts based on solid-state metal alkoxides.展开更多
基金supported by the National Natural Science Foundation of China (21573083)the Fundamental Research Funds for the Central Universities (2019kfy RCPY100)
文摘Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treatment of solid Ni-Co glycerate nanospheres followed by phosphorization is delivered to synthesize hierarchical Ni Co P hollow nanoflowers with ultrathin nanosheet assembly.The microstructure of Ni Co P can be availably tailored by adjusting the hydrothermal treatment temperature through affecting the hydrolysis process of Ni-Co glycerate nanospheres and the occurred Kirkendall effect.Benefitting from the promoted exposure of active sites and affluent mass diffusion routes,the HER performance of the Ni Co P hollow nanoflowers has been obviously enhanced in contrast with the solid Ni Co P nanospheres.The fabricated Ni Co P hollow nanoflowers yield the current density of 10 m A cmà2at small overpotentials of 95 and 127 m V in 0.5 mol Là1H2SO4and 1.0 mol Là1KOH solution,respectively.Moreover,the two-electrode alkaline cell assembled with the Ni Co P and Ir/C catalysts exhibits sustainable stability for overall water splitting.The work provides a simple but efficient method to regulate the microstructure of transition metal phosphides,which is helpful for achieving high-performance hydrogen evolution catalysts based on solid-state metal alkoxides.