The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The c...The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.展开更多
RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were sy...RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl(Ru3(CO)(12)) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure–activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13–14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe.展开更多
Despite outstanding accomplishments in catalyst discovery,finding new,more efficient,environmentally neutral,and noble metalfree catalysts remains challenging and unsolved.Recently,complex solid solutions consisting o...Despite outstanding accomplishments in catalyst discovery,finding new,more efficient,environmentally neutral,and noble metalfree catalysts remains challenging and unsolved.Recently,complex solid solutions consisting of at least five different elements and often named as high-entropy alloys have emerged as a new class of electrocatalysts for a variety of reactions.The multicomponent combinations of elements facilitate tuning of active sites and catalytic properties.Predicting optimal catalyst composition remains difficult,making testing of a very high number of them indispensable.We present the high-throughput screening of the electrochemical activity of thin film material libraries prepared by combinatorial co-sputtering of metals which are commonly used in catalysis(Pd,Cu,Ni)combined with metals which are not commonly used in catalysis(Ti,Hf,Zr).Introducing unusual elements in the search space allows discovery of catalytic activity for hitherto unknown compositions.Material libraries with very similar composition spreads can show different activities vs.composition trends for different reactions.In order to address the inherent challenge of the huge combinatorial material space and the inability to predict active electrocatalyst compositions,we developed a high-throughput process based on co-sputtered material libraries,and performed high-throughput characterization using energy dispersive X-ray spectroscopy(EDS),scanning transmission electron microscopy(SEM),X-ray diffraction(XRD)and conductivity measurements followed by electrochemical screening by means of a scanning droplet cell.The results show surprising material compositions with increased activity for the oxygen reduction reaction and the hydrogen evolution reaction.Such data are important input data for future data-driven materials prediction.展开更多
文摘The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.
基金the IMPRS-Sur Mat of the Max Planck Society for a research grant
文摘RuO2 nanoparticles supported on multi-walled carbon nanotubes(CNTs) functionalized with oxygen(OCNTs) and nitrogen(NCNTs) were employed for the oxygen evolution reaction(OER) in 0.1 M KOH.The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl(Ru3(CO)(12)) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure–activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13–14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe.
基金support by the German Research Foundation(Deutsche Forschungsgemeinschaft,DFG)in the framework of the projects AN 1570/2-1(C.A.,S.S.)and LU 1175/31-1)(A.L)the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(grant agreement CasCat[833408],W.S.).
文摘Despite outstanding accomplishments in catalyst discovery,finding new,more efficient,environmentally neutral,and noble metalfree catalysts remains challenging and unsolved.Recently,complex solid solutions consisting of at least five different elements and often named as high-entropy alloys have emerged as a new class of electrocatalysts for a variety of reactions.The multicomponent combinations of elements facilitate tuning of active sites and catalytic properties.Predicting optimal catalyst composition remains difficult,making testing of a very high number of them indispensable.We present the high-throughput screening of the electrochemical activity of thin film material libraries prepared by combinatorial co-sputtering of metals which are commonly used in catalysis(Pd,Cu,Ni)combined with metals which are not commonly used in catalysis(Ti,Hf,Zr).Introducing unusual elements in the search space allows discovery of catalytic activity for hitherto unknown compositions.Material libraries with very similar composition spreads can show different activities vs.composition trends for different reactions.In order to address the inherent challenge of the huge combinatorial material space and the inability to predict active electrocatalyst compositions,we developed a high-throughput process based on co-sputtered material libraries,and performed high-throughput characterization using energy dispersive X-ray spectroscopy(EDS),scanning transmission electron microscopy(SEM),X-ray diffraction(XRD)and conductivity measurements followed by electrochemical screening by means of a scanning droplet cell.The results show surprising material compositions with increased activity for the oxygen reduction reaction and the hydrogen evolution reaction.Such data are important input data for future data-driven materials prediction.