End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windin...End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.展开更多
The end windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage (especially in case of resonance) and noise. To avoid this, it is important to predict the natural...The end windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage (especially in case of resonance) and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements during the design process. Hence, a material model of the complete stator bar is necessary. This paper shows the development of such a material model. The composite structure of a stator bar is quite complex and makes it impossible to provide a quick calculation of the eigenvalues. That is the reason for using a suitable, homogeneously, geometry based solid model. Special attention was paid to the experimental determination of the material characteristics of the orthotropic composite space brackets. The numerical results have been evaluated against measurements. Eigenvalues, Young's modulus, and shear modulus have been experimentally investigated.展开更多
文摘End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations.
文摘The end windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage (especially in case of resonance) and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements during the design process. Hence, a material model of the complete stator bar is necessary. This paper shows the development of such a material model. The composite structure of a stator bar is quite complex and makes it impossible to provide a quick calculation of the eigenvalues. That is the reason for using a suitable, homogeneously, geometry based solid model. Special attention was paid to the experimental determination of the material characteristics of the orthotropic composite space brackets. The numerical results have been evaluated against measurements. Eigenvalues, Young's modulus, and shear modulus have been experimentally investigated.