Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru...Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.展开更多
This paper presents a new approach to evaluating the electrostatic/magnetic adhesion force between two adjacent objects separated by a thin gap.In this approach,instead of generating mesh for the gap,a contact boundar...This paper presents a new approach to evaluating the electrostatic/magnetic adhesion force between two adjacent objects separated by a thin gap.In this approach,instead of generating mesh for the gap,a contact boundary is introduced in the finite element modeling to obtain a reasonable field distribution;then the field in the gap is approximated based on the continuity condition at their interface,so that the adhesion force can be properly calculated.Moreover,a simple equivalent circuit model is introduced to explain how the thin gap influences the adhesion force significantly.Numerical experiments are given to demonstrate the validity of the proposed method and the significance of the thin gap.展开更多
The energy harvesting technology for the ubiquitous natural wind enables a desirable solution to the issue of distributed sensors in the bridge environmental sensing Internet of Things(Io T)system being restricted to ...The energy harvesting technology for the ubiquitous natural wind enables a desirable solution to the issue of distributed sensors in the bridge environmental sensing Internet of Things(Io T)system being restricted to conventional energy supply.In this work,a self-powered system based on a compact galloping piezoelectric-triboelectric energy harvester(GPTEH)is developed to achieve efficient wind energy harvesting.The GPTEH is constructed on the prototype of a cantilever structure with piezoelectric macro-fiber composite(MFC)sheets and a rectangular bluff body with triboelectric nanogenerators(TENGs).Through a special swing-type structural design with iron blocks inside the bluff body,the GPTEH exhibits preferable aerodynamic behavior and excellent energy conversion efficiency,compared to conventional cantilever kind of piezoelectric wind energy harvester(PWEH).The GPTEH also demonstrates the capability of high output power density(PEH of 23.65 W m^(-2)and TENG of 1.59 W m^(-2)),superior response wind speed(about 0.5 m s^(-1)),and excellent long-term stability(over 14000 cyclic tests).Furthermore,a power management system is developed to efficiently utilize the output energy from GPTEH to power the sensors and wirelessly transmit environmental data to the terminals.The proposed GPTEH-powered system exhibits a great potential for the bridge environmental monitoring and Io T technologies.展开更多
Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as ...Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed.展开更多
基金the support from the National Key R&D Program of China underGrant(Grant No.2020YFA0711700)the National Natural Science Foundation of China(Grant Nos.52122801,11925206,51978609,U22A20254,and U23A20659)G.W.is supported by the National Natural Science Foundation of China(Nos.12002303,12192210 and 12192214).
文摘Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites.
基金National Natural Science Foundation of China(No.11272074)National Science and Technology Major Project(No.2011ZX02403-00)。
文摘This paper presents a new approach to evaluating the electrostatic/magnetic adhesion force between two adjacent objects separated by a thin gap.In this approach,instead of generating mesh for the gap,a contact boundary is introduced in the finite element modeling to obtain a reasonable field distribution;then the field in the gap is approximated based on the continuity condition at their interface,so that the adhesion force can be properly calculated.Moreover,a simple equivalent circuit model is introduced to explain how the thin gap influences the adhesion force significantly.Numerical experiments are given to demonstrate the validity of the proposed method and the significance of the thin gap.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0711700)the National Natural Science Foundation of China(Grant Nos.52122801,11925206,U22A20254,U23A20659,and51978609)+3 种基金Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR20E080003)the Key Research Project of Zhejiang(Grant No.LD22E030007)the“Leading Goose”R&D Program of Zhejiang Province(Grant No.2022C01136)Zhejiang University Education Foundation Global Partnership Fund(Grant No.100000-11320)。
文摘The energy harvesting technology for the ubiquitous natural wind enables a desirable solution to the issue of distributed sensors in the bridge environmental sensing Internet of Things(Io T)system being restricted to conventional energy supply.In this work,a self-powered system based on a compact galloping piezoelectric-triboelectric energy harvester(GPTEH)is developed to achieve efficient wind energy harvesting.The GPTEH is constructed on the prototype of a cantilever structure with piezoelectric macro-fiber composite(MFC)sheets and a rectangular bluff body with triboelectric nanogenerators(TENGs).Through a special swing-type structural design with iron blocks inside the bluff body,the GPTEH exhibits preferable aerodynamic behavior and excellent energy conversion efficiency,compared to conventional cantilever kind of piezoelectric wind energy harvester(PWEH).The GPTEH also demonstrates the capability of high output power density(PEH of 23.65 W m^(-2)and TENG of 1.59 W m^(-2)),superior response wind speed(about 0.5 m s^(-1)),and excellent long-term stability(over 14000 cyclic tests).Furthermore,a power management system is developed to efficiently utilize the output energy from GPTEH to power the sensors and wirelessly transmit environmental data to the terminals.The proposed GPTEH-powered system exhibits a great potential for the bridge environmental monitoring and Io T technologies.
基金financially and jointly supported by the R&D Program of Department of Housing and Urban-Rural Development of Hubei Province(Grant No.202023)Wuhan Municipal Engineering Group(Grant No.202105)。
文摘Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed.