Background: The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and incre...Background: The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment. This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance, carcass traits, meat quality, and plasma metabolites of pigs of different genotypes. Methods: Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups (Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio; n = 24 per treatment) in a 2 x 2 factorial arrangement. Blood and muscle samples were collected at the end of the nursery, growing, and finishing phases. Results: We observed significant interactions (P 〈 0.05) between breed and diet for total fat percentage, intramuscular fat (IMF) content, protein content in biceps femoris (BF) muscle, and plasma urea nitrogen (UN) concentration in the nursery phase; for average daily gain (ADG), average daily feed intake (ADFI), dry matter, IMF content in psoas major (PM) muscle, and plasma total protein and albumin concentrations in the growing phase; and for drip loss and plasma UN concentration in the finishing phase. Breed influenced (P 〈 0.05) growth performance, carcass traits, and meat quality, but not plasma metabolites. Throughout the trial, Landrace pigs showed significantly higher (P 〈 0.0_5) ADG, ADFI, dressing percentage, lean mass rate, and loin-eye area than did Bama mini-pigs, but significantly lower (P 〈 0.0.5) feed/gain ratio, fat percentage, backfat thickness, and IMF content. Dietary protein/energy ratio influenced the pH value, chemical composition of BF and PM muscles, and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase, and plasma concentration of UN. Conclusions: Compared with Landrace pigs, Bama mini-pigs showed slower growth and lower carcass performance, but had better meat quality. Moreover, unlike Landrace pigs, the dietary protein/energy ratio did not affect the growth performance of Bama mini-pigs. These results suggest that, in swine production, low dietary protein/energy ratio may be useful for reducing feed costs and minimizing the adverse effects of ammonia release into the environment.展开更多
There is increasing evidence that stress can activate the hypothalamic-pituitary-adrenal-axis and hypothalamic-pituitary- thyroid-axis, and further affect the synthesis and secretion of corticotrophin-releasing hormo...There is increasing evidence that stress can activate the hypothalamic-pituitary-adrenal-axis and hypothalamic-pituitary- thyroid-axis, and further affect the synthesis and secretion of corticotrophin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). To evaluate the effect of cold stress on the hypothalamic CRH and TRH messenger RNA (mRNA) levels in Yisha chickens, male Yisha chickens were subjected to acute (1, 6, 12 h) and chronic (5, 10, 20 d) cold stress (12±1)℃. Hypothalami were collected for assessment of mRNA levels by semi-quantitative RT-PCR. Acute stress resulted in a significant decrease of CRH mRNA levels at 6 and 12 h, and a significant increase of TRH mRNA levels at every stress time point. Chronic cold stress resulted in a significant increase of CRH mRNA levels and a significant decrease of TRH mRNA levels compared with the control group at every stress time point. The results suggest that the two genes differently respond to cold stress at the mRNA levels. And the different degrees of cold stress will produce different effects on the identical gene.展开更多
基金supported by the National Basic Research Program of China(No.2012CB124704 and 2013CB127305)KC.Wong Education Foundation,Hong Kong
文摘Background: The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment. This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance, carcass traits, meat quality, and plasma metabolites of pigs of different genotypes. Methods: Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups (Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio; n = 24 per treatment) in a 2 x 2 factorial arrangement. Blood and muscle samples were collected at the end of the nursery, growing, and finishing phases. Results: We observed significant interactions (P 〈 0.05) between breed and diet for total fat percentage, intramuscular fat (IMF) content, protein content in biceps femoris (BF) muscle, and plasma urea nitrogen (UN) concentration in the nursery phase; for average daily gain (ADG), average daily feed intake (ADFI), dry matter, IMF content in psoas major (PM) muscle, and plasma total protein and albumin concentrations in the growing phase; and for drip loss and plasma UN concentration in the finishing phase. Breed influenced (P 〈 0.05) growth performance, carcass traits, and meat quality, but not plasma metabolites. Throughout the trial, Landrace pigs showed significantly higher (P 〈 0.0_5) ADG, ADFI, dressing percentage, lean mass rate, and loin-eye area than did Bama mini-pigs, but significantly lower (P 〈 0.0.5) feed/gain ratio, fat percentage, backfat thickness, and IMF content. Dietary protein/energy ratio influenced the pH value, chemical composition of BF and PM muscles, and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase, and plasma concentration of UN. Conclusions: Compared with Landrace pigs, Bama mini-pigs showed slower growth and lower carcass performance, but had better meat quality. Moreover, unlike Landrace pigs, the dietary protein/energy ratio did not affect the growth performance of Bama mini-pigs. These results suggest that, in swine production, low dietary protein/energy ratio may be useful for reducing feed costs and minimizing the adverse effects of ammonia release into the environment.
文摘There is increasing evidence that stress can activate the hypothalamic-pituitary-adrenal-axis and hypothalamic-pituitary- thyroid-axis, and further affect the synthesis and secretion of corticotrophin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). To evaluate the effect of cold stress on the hypothalamic CRH and TRH messenger RNA (mRNA) levels in Yisha chickens, male Yisha chickens were subjected to acute (1, 6, 12 h) and chronic (5, 10, 20 d) cold stress (12±1)℃. Hypothalami were collected for assessment of mRNA levels by semi-quantitative RT-PCR. Acute stress resulted in a significant decrease of CRH mRNA levels at 6 and 12 h, and a significant increase of TRH mRNA levels at every stress time point. Chronic cold stress resulted in a significant increase of CRH mRNA levels and a significant decrease of TRH mRNA levels compared with the control group at every stress time point. The results suggest that the two genes differently respond to cold stress at the mRNA levels. And the different degrees of cold stress will produce different effects on the identical gene.