This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ...This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.展开更多
The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the...The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.展开更多
In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To un...In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.展开更多
Pore pressure(PP)information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development.PP prediction is an essential requirement to ensure safe drilling opera...Pore pressure(PP)information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development.PP prediction is an essential requirement to ensure safe drilling operations and it is a fundamental input for well design,and mud weight estimation for wellbore stability.However,the pore pressure trend prediction in complex geological provinces is challenging particularly at oceanic slope setting,where sedimentation rate is relatively high and PP can be driven by various complex geo-processes.To overcome these difficulties,an advanced machine learning(ML)tool is implemented in combination with empirical methods.The empirical method for PP prediction is comprised of data pre-processing and model establishment stage.Eaton's method and Porosity method have been used for PP calculation of the well U1517A located at Tuaheni Landslide Complex of Hikurangi Subduction zone of IODP expedition 372.Gamma-ray,sonic travel time,bulk density and sonic derived porosity are extracted from well log data for the theoretical framework construction.The normal compaction trend(NCT)curve analysis is used to check the optimum fitting of the low permeable zone data.The statistical analysis is done using the histogram analysis and Pearson correlation coefficient matrix with PP data series to identify potential input combinations for ML-based predictive model development.The dataset is prepared and divided into two parts:Training and Testing.The PP data and well log of borehole U1517A is pre-processed to scale in between[-1,+1]to fit into the input range of the non-linear activation/transfer function of the decision tree regression model.The Decision Tree Regression(DTR)algorithm is built and compared to the model performance to predict the PP and identify the overpressure zone in Hikurangi Tuaheni Zone of IODP Expedition 372.展开更多
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v...The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration.展开更多
The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.D...The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.展开更多
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j...Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.展开更多
On 6 February 2023,a calamitous earthquake with a magnitude of 7.8 struck close to the city of Kahraman-maraş,sending tremors through southeastern Türkiye and northern Syria.This earthquake(Event 1),which initiat...On 6 February 2023,a calamitous earthquake with a magnitude of 7.8 struck close to the city of Kahraman-maraş,sending tremors through southeastern Türkiye and northern Syria.This earthquake(Event 1),which initiated at 04:17:34 AM local time(or 01:17:34 UTC according to the United States Geological Survey,USGS),persisted for approximately 90 seconds,carving a trail of destruction along roughly 380 kilometers of the Earth’s surface(e.g.,Ren CM et al.,2024).This initial earthquake was succeeded by a second significant tremor,Event 2,with a magnitude of 7.6,occurring nine hours later at 10:24:48 UTC(according to the USGS).Event 2 propagated along a different fault line,approximately 100 kilometers north of the epicenter of Event 1,generating surface ruptures extending close to 200 kilometers.The twin seismic shocks of the 2023 Kahramanmaraşearthquake wrought extensive havoc,devastating densely inhabited regions spanning several large cities in southeastern Türkiye and northwestern Syria,including but not limited to Kahramanmaraş,Adıyaman,Şanlıurfa,Antakya,Gaziantep,Malatya,İskenderun,and Adana.The tragic aftermath of these events includes a death toll of some 60,000 and over 120,000 injuries across the two nations.展开更多
频域有限差分(finite difference frequency domain,FDFD)方法是地震波场模拟的常用方法,FDFD地震波场模拟的关键之一是构造能有效压制数值频散的FDFD系数。在已有的构造地震波场模拟FDFD系数的方法中,随一个网格内的波长个数变化的自适...频域有限差分(finite difference frequency domain,FDFD)方法是地震波场模拟的常用方法,FDFD地震波场模拟的关键之一是构造能有效压制数值频散的FDFD系数。在已有的构造地震波场模拟FDFD系数的方法中,随一个网格内的波长个数变化的自适应FDFD系数可以最大程度地压制数值频散。目前计算自适应FDFD系数的方法涉及角度积分、共轭梯度优化、顺序初值选取、光滑正则化等问题,不仅较难实现而且计算效率较低。为了简化自适应FDFD系数的计算并提高相应计算效率,本文提出一种新的计算自适应FDFD系数的方法。所提方法首先将不同离散传播角度的平面波解代入FDFD格式,构造相应的最小二乘问题。由于该最小二乘问题较为病态,常规的基于正规方程组的求解方法难以得到光滑的自适应FDFD系数,本文提出通过QR矩阵分解求解相应超定线性方程组来求解该最小二乘问题。相比已有的基于角度积分、共轭梯度优化、顺序初值选取的计算自适应FDFD系数的方法,所提方法在可以得到光滑自适应FDFD系数的基础上,不仅计算过程更简洁,且计算效率明显提高。数值波场模拟结果表明,基于QR矩阵分解的自适应系数FDFD方法可以达到与基于角度积分、共轭梯度优化、顺序初值选取的自适应系数FDFD方法相同的精度,同时所需的计算时间更少。展开更多
We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for cont...We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.展开更多
A recent study demonstrated that in small-scale prepolarized surface nuclear magnetic resonance(SNMR-PP)measurements with a footprint of a few square meters,customized PP switch-off ramps can serve as an efficient exc...A recent study demonstrated that in small-scale prepolarized surface nuclear magnetic resonance(SNMR-PP)measurements with a footprint of a few square meters,customized PP switch-off ramps can serve as an efficient excitation mechanism,eliminating the requirement for a conventional oscillating excitation pulse.This approach enables the detection of short relaxation signals from the unsaturated soil zone and can,therefore,be used to directly provide soil moisture and pore geometry information.Because ultimately such small-scale SNMR-PP setups are intended for a mobile application,it is necessary to develop strategies that allow for speedy measurement progress and do not require noise cancellation protocols based on reference stations.Hence,we developed a new concentric figure-of-eight(cFOE)loop layout that combines the direction independence of a circular loop with the intrinsic noise cancellation properties of a classical FOE-loop.This approach significantly decreases the measurement time because suitable signal-to-noise ratios are reached much faster compared to a classical circular loop and will bring us one step further toward fast and non-invasive soil moisture mapping applications.展开更多
In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastr...In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects.展开更多
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio...By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku, Japan earthquake of Ma...We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku, Japan earthquake of March 11, 2011. The data include outgoing long wave radiation (OLR), GPS/TEC, lower Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 7th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere also there was confirmed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. The joint preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku, Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the great Tohoku earthquake.展开更多
Estimation of petrophysical parameters is an important issue of any reservoirs. Porosity, volume of shale and water saturation has been evaluated for reservoirs of Upper Assam basin, located in northeastern India from...Estimation of petrophysical parameters is an important issue of any reservoirs. Porosity, volume of shale and water saturation has been evaluated for reservoirs of Upper Assam basin, located in northeastern India from well log and seismic data. Absolute acoustic impedance(AAI) and relative acoustic impedance(RAI) are generated from model based inversion of 2-D post-stack seismic data. The top of geological formation, sand reservoirs, shale layers and discontinuities at faults are detected in RAI section under the study area. Tipam Sandstone(TS) and Barail Arenaceous Sandstone(BAS) are the main reservoirs,delineated from the logs of available wells and RAI section. Porosity section is obtained using porosity wavelet and porosity reflectivity from post-stack seismic data. Two multilayered feed forward neural network(MLFN) models are created with inputs: AAI, porosity, density and shear impedance and outputs: volume of shale and water saturation with single hidden layer. The estimated average porosity in TS and BAS reservoir varies from 30% to 36% and 18% to 30% respectively. The volume of shale and water saturation ranges from 10% to 30% and 20% to 60% in TS reservoir and 28% to 30% and 23% to 55% in BAS reservoir respectively.展开更多
We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of t...We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of the whole foreshock sequence and the early aftershocks.We designed a detection strategy incorporating both an artificial intelligent(AI)picker and a matched filter algorithm.Here,we adopt a hybrid AI method incorporating convolutional and recurrent neural network(CNN&RNN)for event detection and phase picking respectively(i.e.CERP),a light-weight AI picker that can be trained with small volume of data.CERP is first trained with detections from a STA/LTA and Kurtosis-based method called PAL,and then construct a rather complete template set of~4,000 events.Finally,the matched filter algorithm MESS augments the initial detections and measures differential travel times with cross-correlation,which finally results in precise relocation.This process gives 9,026 detections,among which 7,943 events can be well relocated.The catalog shows as expected power-law distribution of frequency magnitude and reveals detailed pattern of seismicity evolution.The main features are:(1)the foreshock sequence images simple fault geometry with consistent strike,but also show a variable event depth along strike;(2)the mainshock ruptures the same fault of the foreshock sequence and activate conjugate faults further to the southeast;(3)complex seismicity are developed in the post-seismic period,indicating complex triggering mechanisms.Thus,our catalog provides a reliable basis for further investigations,such as b-value studies,rupture process,and triggering relations.展开更多
Abstract The 2008 Wenchuan earthquake, a major intraplate earthquake with Mw 7.9, occurred on the slowly deforming Longmenshan fault. To better understand the causes of this devastating earthquake, we need knowledge o...Abstract The 2008 Wenchuan earthquake, a major intraplate earthquake with Mw 7.9, occurred on the slowly deforming Longmenshan fault. To better understand the causes of this devastating earthquake, we need knowledge of the regional stress field and the underlying geodynamic processes. Here, we determine focal mechanism solutions (FMSs) of the 2008 Wenchuan earthquake sequence (WES) using both P-wave first-motion polarity data and SH/P amplitude ratio (AR) data. As P-wave polarities are more reliable information, they are given priority over SH/ PAR, the latter of which are used only when the former has loose constraint on the FMSs. We collect data from three categories: (1) permanent stations deployed by the China Earthquake Administration (CEA); (2) the Western Sichuan Passive Seismic Array (WSPSA) deployed by Institute of Geology, CEA; (3) global stations from Incorporated Research Institutions for Seismology. Finally, 129 events with magnitude over Ms 4.0 in the 2008 WES are identified to have well-constrained FMSs. Among them, 83 are well constrained by P-wave polarities only as shown by Cai et al. (Earthq Sci 24(1):115-125,2011), and the rest of which are newly constrained by incorporating SH/P AR. Based on the spatial distribution and FMSs of the WES, we draw following conclusions: (1) the principle compressional directions of most FMSs of the WES are subhorizontal, generally in agreement with the conclusion given by Cai et al. (2011) but with a few modifications that the compressional directions are WNW-ESE around Wenchuan and ENE-WSW around Qingchuan, respectively. The subhorizontal compressional direction along the Longmenshan fault from SW to NE seems to have a leftlateral rotation, which agrees well with regional stress field inverted by former researchers (e.g., Xu et al., Acta Seismol Sin 30(5), 1987; Acta Geophys Sin 32(6), 1989; Cui et al., Seismol Geol 27(2):234-242, 2005); (2) the FMSs of the events not only reflected the regional stress state of the Longmenshan region, but also were obviously controlled by the faults to some extent, which was pointed out by Cai et al. (2011) and Yi et al. (Chin J Geophys 55(4):1213-1227, 2012); (3) while the 2008 Wenchuan earthquake and some of its strong aftershocks released most of the elastic energy accumulated on the Longmen- shan fault, some other aftershocks seem to occur just for releasing the elastic energy promptly created by the 2008 Wenchuan earthquake and some of its strong aftershocks. (4) Our results further suggest that the Longmenshan fault from Wenchuan to Beichuan was nearly fully destroyed by the 2008 Wenchuan earthquake and accordingly propose that there is less probability for great earthquakes in the middle part of the Longmenshan fault in the near future, although there might be a barrier to the southwest of Wenchuan and it is needed to pay some attention on it in the near future.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20200021)the National Natural Science Foundation of China(Grant No.42174161 and 41974123)the Natural Science Foundation of Heilongjiang Province of China(YQ2023D005).
文摘This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures.
基金the Swiss National Science Foundation for the grant PP00P2_187199 of project OROG3NY.
文摘The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.
文摘In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.
文摘Pore pressure(PP)information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development.PP prediction is an essential requirement to ensure safe drilling operations and it is a fundamental input for well design,and mud weight estimation for wellbore stability.However,the pore pressure trend prediction in complex geological provinces is challenging particularly at oceanic slope setting,where sedimentation rate is relatively high and PP can be driven by various complex geo-processes.To overcome these difficulties,an advanced machine learning(ML)tool is implemented in combination with empirical methods.The empirical method for PP prediction is comprised of data pre-processing and model establishment stage.Eaton's method and Porosity method have been used for PP calculation of the well U1517A located at Tuaheni Landslide Complex of Hikurangi Subduction zone of IODP expedition 372.Gamma-ray,sonic travel time,bulk density and sonic derived porosity are extracted from well log data for the theoretical framework construction.The normal compaction trend(NCT)curve analysis is used to check the optimum fitting of the low permeable zone data.The statistical analysis is done using the histogram analysis and Pearson correlation coefficient matrix with PP data series to identify potential input combinations for ML-based predictive model development.The dataset is prepared and divided into two parts:Training and Testing.The PP data and well log of borehole U1517A is pre-processed to scale in between[-1,+1]to fit into the input range of the non-linear activation/transfer function of the decision tree regression model.The Decision Tree Regression(DTR)algorithm is built and compared to the model performance to predict the PP and identify the overpressure zone in Hikurangi Tuaheni Zone of IODP Expedition 372.
文摘The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration.
基金supports from the National Natural Science Foundation of China(42104110,41974123,42174161,and 12334019)the Natural Science Foundation of Jiangsu Province(BK20210379,BK20200021)+1 种基金the Postdoctoral Science Foundation of China(2022M720989)the Fundamental Research Funds for the Central Universities(B210201032).
文摘The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.
基金supported by the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0306)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32)the National Natural Science Foundation of China(No.42174069).
文摘Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.
基金the National Key R&D Program of China(Nos.2022YFF0800601 and 2022YFF0800602).
文摘On 6 February 2023,a calamitous earthquake with a magnitude of 7.8 struck close to the city of Kahraman-maraş,sending tremors through southeastern Türkiye and northern Syria.This earthquake(Event 1),which initiated at 04:17:34 AM local time(or 01:17:34 UTC according to the United States Geological Survey,USGS),persisted for approximately 90 seconds,carving a trail of destruction along roughly 380 kilometers of the Earth’s surface(e.g.,Ren CM et al.,2024).This initial earthquake was succeeded by a second significant tremor,Event 2,with a magnitude of 7.6,occurring nine hours later at 10:24:48 UTC(according to the USGS).Event 2 propagated along a different fault line,approximately 100 kilometers north of the epicenter of Event 1,generating surface ruptures extending close to 200 kilometers.The twin seismic shocks of the 2023 Kahramanmaraşearthquake wrought extensive havoc,devastating densely inhabited regions spanning several large cities in southeastern Türkiye and northwestern Syria,including but not limited to Kahramanmaraş,Adıyaman,Şanlıurfa,Antakya,Gaziantep,Malatya,İskenderun,and Adana.The tragic aftermath of these events includes a death toll of some 60,000 and over 120,000 injuries across the two nations.
基金supported by the National Natural Science Foundation of China(No.42174161,No.41974123)China Postdoctoral Science Foundation(No.2022M711004)+1 种基金China National Petroleum Corporation Exploration and Development Research Institute Open Fund(No.822102016)the Jiangsu Province Science Fund for Distinguished Young Scholars(No.BK20200021).
文摘频域有限差分(finite difference frequency domain,FDFD)方法是地震波场模拟的常用方法,FDFD地震波场模拟的关键之一是构造能有效压制数值频散的FDFD系数。在已有的构造地震波场模拟FDFD系数的方法中,随一个网格内的波长个数变化的自适应FDFD系数可以最大程度地压制数值频散。目前计算自适应FDFD系数的方法涉及角度积分、共轭梯度优化、顺序初值选取、光滑正则化等问题,不仅较难实现而且计算效率较低。为了简化自适应FDFD系数的计算并提高相应计算效率,本文提出一种新的计算自适应FDFD系数的方法。所提方法首先将不同离散传播角度的平面波解代入FDFD格式,构造相应的最小二乘问题。由于该最小二乘问题较为病态,常规的基于正规方程组的求解方法难以得到光滑的自适应FDFD系数,本文提出通过QR矩阵分解求解相应超定线性方程组来求解该最小二乘问题。相比已有的基于角度积分、共轭梯度优化、顺序初值选取的计算自适应FDFD系数的方法,所提方法在可以得到光滑自适应FDFD系数的基础上,不仅计算过程更简洁,且计算效率明显提高。数值波场模拟结果表明,基于QR矩阵分解的自适应系数FDFD方法可以达到与基于角度积分、共轭梯度优化、顺序初值选取的自适应系数FDFD方法相同的精度,同时所需的计算时间更少。
基金jointly supported by the National Key R&D Program (No.2022YFF0800601)the Istanbul Technical University Research Fund (ITU-BAP)+1 种基金the Alexander von Humboldt Foundation Research Fellowship Award for providing computing facilities through the Humboldt-Stiftung Follow-Up Programthe University of California,Riverside。
文摘We build a high-resolution early aftershock catalog for the 2023 SE Türkiye seismic sequence with PALM,a seamless workflow that sequentially performs phase picking,association,location,and matched filter for continuous data.The catalog contains 29,519 well-located events in the two mainshocks rupture region during 2023-02-01–2023-02-28,which significantly improves the detection completeness and relocation precision compared to the public routine catalog.Employing the new PALM catalog,we analyze the structure of the seismogenic fault system.We find that the Eastern Anatolian Fault(EAF)that generated the first M_(W)7.9 mainshock is overall near-vertical,whereas complexities are revealed in a small-scale,such as subparallel subfaults,unmapped branches,and stepovers.The seismicity on EAF is shallow(<15 km)and concentrated in depth distribution,indicating a clear lock-creep transition.In contrast,the SürgüFault(SF)that is responsible for the second M_(W)7.8 mainshock is shovel-shaped for the nucleation segment and has overall low dip angles(~40°–80°).Aftershocks on the SF distribute in a broad range of depth,extending down to~35 km.We also analyze the temporal behavior of seismicity,discovering no immediate foreshocks within~5 days preceding the first mainshock,and no seismic activity on the SF before the second mainshock.
基金supported by the German Research Foundation(Deutsche Forschungsgemeinschaft-DFG)under grant MU 3318/4-1.
文摘A recent study demonstrated that in small-scale prepolarized surface nuclear magnetic resonance(SNMR-PP)measurements with a footprint of a few square meters,customized PP switch-off ramps can serve as an efficient excitation mechanism,eliminating the requirement for a conventional oscillating excitation pulse.This approach enables the detection of short relaxation signals from the unsaturated soil zone and can,therefore,be used to directly provide soil moisture and pore geometry information.Because ultimately such small-scale SNMR-PP setups are intended for a mobile application,it is necessary to develop strategies that allow for speedy measurement progress and do not require noise cancellation protocols based on reference stations.Hence,we developed a new concentric figure-of-eight(cFOE)loop layout that combines the direction independence of a circular loop with the intrinsic noise cancellation properties of a classical FOE-loop.This approach significantly decreases the measurement time because suitable signal-to-noise ratios are reached much faster compared to a classical circular loop and will bring us one step further toward fast and non-invasive soil moisture mapping applications.
文摘In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB418304)the National Natural Science Foundation of China (Grant No 40405010)
文摘By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
基金NASA Goddard Space Flight Center,Chapman University and European Framework program #7 project PREEARTHQUAKE for their kind support
文摘We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku, Japan earthquake of March 11, 2011. The data include outgoing long wave radiation (OLR), GPS/TEC, lower Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 7th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere also there was confirmed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. The joint preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku, Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the great Tohoku earthquake.
基金funding the project (MoES/P.O. (Seismo)/1(273)/2015)
文摘Estimation of petrophysical parameters is an important issue of any reservoirs. Porosity, volume of shale and water saturation has been evaluated for reservoirs of Upper Assam basin, located in northeastern India from well log and seismic data. Absolute acoustic impedance(AAI) and relative acoustic impedance(RAI) are generated from model based inversion of 2-D post-stack seismic data. The top of geological formation, sand reservoirs, shale layers and discontinuities at faults are detected in RAI section under the study area. Tipam Sandstone(TS) and Barail Arenaceous Sandstone(BAS) are the main reservoirs,delineated from the logs of available wells and RAI section. Porosity section is obtained using porosity wavelet and porosity reflectivity from post-stack seismic data. Two multilayered feed forward neural network(MLFN) models are created with inputs: AAI, porosity, density and shear impedance and outputs: volume of shale and water saturation with single hidden layer. The estimated average porosity in TS and BAS reservoir varies from 30% to 36% and 18% to 30% respectively. The volume of shale and water saturation ranges from 10% to 30% and 20% to 60% in TS reservoir and 28% to 30% and 23% to 55% in BAS reservoir respectively.
基金supported jointly by National Key R&D Program of China(No.2018YFC1503400)National Natural Science Foundation of China projects(Nos.41774067,U2039204,and 42074046)+2 种基金Science for Earthquake Resilience(No.XH20082Y)US National Science Foundation(No.1941719)University of California at Riverside.
文摘We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of the whole foreshock sequence and the early aftershocks.We designed a detection strategy incorporating both an artificial intelligent(AI)picker and a matched filter algorithm.Here,we adopt a hybrid AI method incorporating convolutional and recurrent neural network(CNN&RNN)for event detection and phase picking respectively(i.e.CERP),a light-weight AI picker that can be trained with small volume of data.CERP is first trained with detections from a STA/LTA and Kurtosis-based method called PAL,and then construct a rather complete template set of~4,000 events.Finally,the matched filter algorithm MESS augments the initial detections and measures differential travel times with cross-correlation,which finally results in precise relocation.This process gives 9,026 detections,among which 7,943 events can be well relocated.The catalog shows as expected power-law distribution of frequency magnitude and reveals detailed pattern of seismicity evolution.The main features are:(1)the foreshock sequence images simple fault geometry with consistent strike,but also show a variable event depth along strike;(2)the mainshock ruptures the same fault of the foreshock sequence and activate conjugate faults further to the southeast;(3)complex seismicity are developed in the post-seismic period,indicating complex triggering mechanisms.Thus,our catalog provides a reliable basis for further investigations,such as b-value studies,rupture process,and triggering relations.
基金supported by the Wenchuan Fault Scientific Drilling Program(WFSD)
文摘Abstract The 2008 Wenchuan earthquake, a major intraplate earthquake with Mw 7.9, occurred on the slowly deforming Longmenshan fault. To better understand the causes of this devastating earthquake, we need knowledge of the regional stress field and the underlying geodynamic processes. Here, we determine focal mechanism solutions (FMSs) of the 2008 Wenchuan earthquake sequence (WES) using both P-wave first-motion polarity data and SH/P amplitude ratio (AR) data. As P-wave polarities are more reliable information, they are given priority over SH/ PAR, the latter of which are used only when the former has loose constraint on the FMSs. We collect data from three categories: (1) permanent stations deployed by the China Earthquake Administration (CEA); (2) the Western Sichuan Passive Seismic Array (WSPSA) deployed by Institute of Geology, CEA; (3) global stations from Incorporated Research Institutions for Seismology. Finally, 129 events with magnitude over Ms 4.0 in the 2008 WES are identified to have well-constrained FMSs. Among them, 83 are well constrained by P-wave polarities only as shown by Cai et al. (Earthq Sci 24(1):115-125,2011), and the rest of which are newly constrained by incorporating SH/P AR. Based on the spatial distribution and FMSs of the WES, we draw following conclusions: (1) the principle compressional directions of most FMSs of the WES are subhorizontal, generally in agreement with the conclusion given by Cai et al. (2011) but with a few modifications that the compressional directions are WNW-ESE around Wenchuan and ENE-WSW around Qingchuan, respectively. The subhorizontal compressional direction along the Longmenshan fault from SW to NE seems to have a leftlateral rotation, which agrees well with regional stress field inverted by former researchers (e.g., Xu et al., Acta Seismol Sin 30(5), 1987; Acta Geophys Sin 32(6), 1989; Cui et al., Seismol Geol 27(2):234-242, 2005); (2) the FMSs of the events not only reflected the regional stress state of the Longmenshan region, but also were obviously controlled by the faults to some extent, which was pointed out by Cai et al. (2011) and Yi et al. (Chin J Geophys 55(4):1213-1227, 2012); (3) while the 2008 Wenchuan earthquake and some of its strong aftershocks released most of the elastic energy accumulated on the Longmen- shan fault, some other aftershocks seem to occur just for releasing the elastic energy promptly created by the 2008 Wenchuan earthquake and some of its strong aftershocks. (4) Our results further suggest that the Longmenshan fault from Wenchuan to Beichuan was nearly fully destroyed by the 2008 Wenchuan earthquake and accordingly propose that there is less probability for great earthquakes in the middle part of the Longmenshan fault in the near future, although there might be a barrier to the southwest of Wenchuan and it is needed to pay some attention on it in the near future.