期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
应用欧拉-拉格朗日方法分析动脉粥样硬化性颈动脉血流的流-固相互作用
1
作者 Majid SIAVASHI Ava BINA +1 位作者 Mojtaba SAYADNEJAD Borhan BEIGZADEH 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第1期151-168,共18页
本研究旨在模拟不同狭窄程度和脉搏率的颈动脉搏动血流。采用流-固耦合(FSI)和任意拉格朗日-欧拉(ALE)方法研究了不同狭窄程度、脉搏率和动脉壁性质对周围流体的影响。分别应用Carreau-Yasuda非牛顿超弹性模型和修正Mooney-Rivin超弹性... 本研究旨在模拟不同狭窄程度和脉搏率的颈动脉搏动血流。采用流-固耦合(FSI)和任意拉格朗日-欧拉(ALE)方法研究了不同狭窄程度、脉搏率和动脉壁性质对周围流体的影响。分别应用Carreau-Yasuda非牛顿超弹性模型和修正Mooney-Rivin超弹性模型于具有非牛顿行为的血液和超弹性血管壁。结果得到血液的壁面径向位移、压力分布、轴向速度分布和壁面剪切应力。通过增加狭窄的严重程度,轴向速度、血压变化、最大壁面剪切应力和壁面径向位移均呈增长趋势。当脉率在狭窄程度为75%时,最大流量矩、壁面径向位移、压力、轴向速度和壁面剪应力的最大值均增大。此外,与弹性和刚性模型相比,将动脉壁视为超弹性模型,将其周围流体视为非牛顿和非定常,可以使模拟更加真实。在严重程度高达50%的狭窄中,红细胞受到轻微损害,而在严重程度为75%的狭窄中观察到溶血。通过改善动脉粥样硬化,弹性模量从500 k Pa提高到2 MPa,在60 bpm脉率和狭窄程度75%下,剪切应力最大值增长65%。与刚性和弹性动脉壁相比,动脉壁的超弹性模型导致较低的轴向速度、较低的血压、较低的剪切应力和较高的径向位移。 展开更多
关键词 流-固耦合 狭窄严重程度 脉率变化 超弹性的动脉 动脉粥样硬化
下载PDF
Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow 被引量:23
2
作者 Siavashi Majid Jamali Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1850-1865,共16页
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ... Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds. 展开更多
关键词 nanofluid heat transfer enhancement forced convection entropy generation annulus radius ratio
下载PDF
Erratum to: Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow 被引量:1
3
作者 Siavashi Majid Jamali Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2486-2486,共1页
Authors’ first and last names were interchanged in the original version of the article and they should be replaced as follows: Majid Siavashi, Mohammad Jamali.
关键词 Authors’ first interchanged
下载PDF
Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software 被引量:7
4
作者 Mahmoud Ahmadpour Majid Siavashi Mohammad Hossein Doranehgard 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2630-2637,共8页
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum... Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved. 展开更多
关键词 two-phase flow porous media fractured reservoirs streamline simulation dual porosity implicit pressure-explicit saturation
下载PDF
Progress in the proton exchange membrane fuel cells(PEMFCs)water/thermal management:From theory to the current challenges and real-time fault diagnosis methods 被引量:3
5
作者 Hossein Pourrahmani Adel Yavarinasab +2 位作者 Majid Siavashi Mardit Matian Jan Van herle 《Energy Reviews》 2022年第1期43-66,共24页
Proton Exchange Membrane Fuel Cells(PEMFCs)are known as a promising alternative for internal combustion engines(ICE)to reduce pollution.Recent progress of PEMFCs is heading towards achieving higher power densities,red... Proton Exchange Membrane Fuel Cells(PEMFCs)are known as a promising alternative for internal combustion engines(ICE)to reduce pollution.Recent progress of PEMFCs is heading towards achieving higher power densities,reducing the refueling time,and decreasing the degradations,to facilitate the commercialization of hydrogen mobility.Model-assisted stack component development,diagnosis,and management are essential to ensure improved stack design and operation for tackling the existing implementation challenges of PEMFCs.Past reviews usually touched on a specific aspect,which can hardly provide the readers a complete picture of the key challenges and advances in water management.This paper aims at delivering a comprehensive source to review,from both experimental,analytical,and numerical viewpoints,the key operational challenges,and solutions of the stack to improve water/thermal management and cold start.In addition to presenting the fundamental theory to develop an analytical model,the recent advances in the flow field design,nanofluid coolants,and cold-start methods.Furthermore,the impacts of microstructural properties and the design of the porous layers on the water/thermal management are described. 展开更多
关键词 Proton exchange membrane fuel cell(PEMFC) Theoretical modeling Technological challenges Water/thermal management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部