It has been many years since "the tumor necrosis factor-a-converting enzyme”,also known as ADAM17/TACE, was described as "the enzyme that does it all” because of its role in neurodegenerative diseases and ...It has been many years since "the tumor necrosis factor-a-converting enzyme”,also known as ADAM17/TACE, was described as "the enzyme that does it all” because of its role in neurodegenerative diseases and in several physiological processes including proteolysis, adhesion, intracellular signaling, migration and proliferation. ADAM17/TACE is an integral membrane protein that belongs to the disintegrin and metalloprotease (ADAM) family. Several years ago, Romero-Grimaldi et al.展开更多
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in mai...Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Trans- genic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alter- ations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and ara- binoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.展开更多
The habituation of cell cultures to cellulose biosynthesis inhibitors such as dichlobenil (DCB) represents a valu- able tool to improve our knowledge of the mechanisms involved in plant cell wall structural plastici...The habituation of cell cultures to cellulose biosynthesis inhibitors such as dichlobenil (DCB) represents a valu- able tool to improve our knowledge of the mechanisms involved in plant cell wall structural plasticity. Maize cell lines habituated to lethal concentrations of DCB were able to grow through the acquisition of a modified cell wall in which cellulose was partially replaced by a more extensive network of arabinoxylans. The aim of this work was to investigate the phenolic metabolism of non-habituated and DCB-habituated maize cell cultures. Maize cell cultures were fed [14C]cinnamate and the fate of the radioactivity in different intra-protoplasmic and wall-localized fractions throughout the culture cycle was analyzed by autoradiography and scintillation counting. Non-habituated and habituated cultures did not markedly differ in their ability to uptake exogenous [14C]cinnamic acid. However, interesting differences were found in the radiolabeling of low- and high-Mr metabolites. Habituated cultures displayed a higher number and amount of radiola-beled low-Mr compounds, which could act as reserves later used for polysaccharide feruloylation. DCB-habituated cultures were highly enriched in esterified [14C]dehydrodiferulates and larger coupling products. In conclusion, an extensive and early cross-linking of hydroxycinnamates was observed in DCB-habituated cultures, probably strengthening their cellulose-deficient walls.展开更多
Bean cells that have been habituated to grow in a lethal concentration (12 μM) of 2,6-dichlorobenzonitrile (dichlobenil or DCB, a cellulose biosynthesis inhibitor) are known to have decreased cellulose content in...Bean cells that have been habituated to grow in a lethal concentration (12 μM) of 2,6-dichlorobenzonitrile (dichlobenil or DCB, a cellulose biosynthesis inhibitor) are known to have decreased cellulose content in their cell walls. Xyloglucan, which is bound to cellulose and together with it forms the main loading network of plant cell walls, has also been described to decrease in habituated cells, but whether the change on cellulose affects the xyloglucan structure besides its abundance has not been analyzed. Fragmentation analysis with xyloglucan-specific endoglucanase (XEG) and endocellulase revealed that habituation to DCB caused a change in the fine structure of xyloglucan, namely a decrease in fucosyl residues attached to the galactosyl-xylosyl residues along the glucan backbone. After the removal of herbicide from the medium (dehabituated cells), xyloglucan recovered its fucosyl residues. In addition, some cello-oligosaccharides could be detected only in habituated cells' xyloglucan digested by XEG and endocellulase, corresponding to a glucan co- valently bound or co-precipitated with the hemicelluloses. These results show that structural flexibility of cell walls relies in part on the plasticity of xyloglucan composition and opens up new perspectives to further research in this field.展开更多
The biochemical and molecular processes involved in the habituation of maize cells to growth in the presence of the cellulose biosynthesis inhibitor dichlobenil (DCB) were investigated. DCB affects the synthesis of ...The biochemical and molecular processes involved in the habituation of maize cells to growth in the presence of the cellulose biosynthesis inhibitor dichlobenil (DCB) were investigated. DCB affects the synthesis of cellulose both in active and stationary growth phases and alters the expression of several CesA genes. Of these, ZmCesA5 and ZmCesA7 seem to play a major role in habituating cells to growth in the presence of DCB. As a consequence of the reduction in cellulose, the expression of several genes involved in the synthesis of hydroxycinnamates is increased, resulting in cell walls with higher levels of ferulic and p-coumaric acids. A proteomic analysis revealed that habituation to DCB is linked to modifications in several metabolic pathways. Finally, habituated cells present a reduction in glutathione S-transferase detoxifying activity and antioxidant activities. Plant cell adaptation to the disturbance of such a crucial process as cellulose biosynthesis requires changes in several metabolic networks, in order to modify cell wall architecture and metabolism, and survive in the presence of the inhibitor. Some of these modifications are described in this paper.展开更多
基金supported by the Spanish Consejería de Innovación,Ciencia y Empleo,Junta de Andalucía(P10CTS6639)Ministerio de Econmía y Competitividad(BFU 2015-6852-R,MINECO/FEDER)(both to CC)
文摘It has been many years since "the tumor necrosis factor-a-converting enzyme”,also known as ADAM17/TACE, was described as "the enzyme that does it all” because of its role in neurodegenerative diseases and in several physiological processes including proteolysis, adhesion, intracellular signaling, migration and proliferation. ADAM17/TACE is an integral membrane protein that belongs to the disintegrin and metalloprotease (ADAM) family. Several years ago, Romero-Grimaldi et al.
文摘Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Trans- genic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alter- ations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and ara- binoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.
文摘The habituation of cell cultures to cellulose biosynthesis inhibitors such as dichlobenil (DCB) represents a valu- able tool to improve our knowledge of the mechanisms involved in plant cell wall structural plasticity. Maize cell lines habituated to lethal concentrations of DCB were able to grow through the acquisition of a modified cell wall in which cellulose was partially replaced by a more extensive network of arabinoxylans. The aim of this work was to investigate the phenolic metabolism of non-habituated and DCB-habituated maize cell cultures. Maize cell cultures were fed [14C]cinnamate and the fate of the radioactivity in different intra-protoplasmic and wall-localized fractions throughout the culture cycle was analyzed by autoradiography and scintillation counting. Non-habituated and habituated cultures did not markedly differ in their ability to uptake exogenous [14C]cinnamic acid. However, interesting differences were found in the radiolabeling of low- and high-Mr metabolites. Habituated cultures displayed a higher number and amount of radiola-beled low-Mr compounds, which could act as reserves later used for polysaccharide feruloylation. DCB-habituated cultures were highly enriched in esterified [14C]dehydrodiferulates and larger coupling products. In conclusion, an extensive and early cross-linking of hydroxycinnamates was observed in DCB-habituated cultures, probably strengthening their cellulose-deficient walls.
文摘Bean cells that have been habituated to grow in a lethal concentration (12 μM) of 2,6-dichlorobenzonitrile (dichlobenil or DCB, a cellulose biosynthesis inhibitor) are known to have decreased cellulose content in their cell walls. Xyloglucan, which is bound to cellulose and together with it forms the main loading network of plant cell walls, has also been described to decrease in habituated cells, but whether the change on cellulose affects the xyloglucan structure besides its abundance has not been analyzed. Fragmentation analysis with xyloglucan-specific endoglucanase (XEG) and endocellulase revealed that habituation to DCB caused a change in the fine structure of xyloglucan, namely a decrease in fucosyl residues attached to the galactosyl-xylosyl residues along the glucan backbone. After the removal of herbicide from the medium (dehabituated cells), xyloglucan recovered its fucosyl residues. In addition, some cello-oligosaccharides could be detected only in habituated cells' xyloglucan digested by XEG and endocellulase, corresponding to a glucan co- valently bound or co-precipitated with the hemicelluloses. These results show that structural flexibility of cell walls relies in part on the plasticity of xyloglucan composition and opens up new perspectives to further research in this field.
文摘The biochemical and molecular processes involved in the habituation of maize cells to growth in the presence of the cellulose biosynthesis inhibitor dichlobenil (DCB) were investigated. DCB affects the synthesis of cellulose both in active and stationary growth phases and alters the expression of several CesA genes. Of these, ZmCesA5 and ZmCesA7 seem to play a major role in habituating cells to growth in the presence of DCB. As a consequence of the reduction in cellulose, the expression of several genes involved in the synthesis of hydroxycinnamates is increased, resulting in cell walls with higher levels of ferulic and p-coumaric acids. A proteomic analysis revealed that habituation to DCB is linked to modifications in several metabolic pathways. Finally, habituated cells present a reduction in glutathione S-transferase detoxifying activity and antioxidant activities. Plant cell adaptation to the disturbance of such a crucial process as cellulose biosynthesis requires changes in several metabolic networks, in order to modify cell wall architecture and metabolism, and survive in the presence of the inhibitor. Some of these modifications are described in this paper.