Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon na...Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon nanotubes(CNTs) were functionalized with melamine and/or iron(Ⅱ) phthalocyanine(FePc)following three different methodologies:(i) Functionalization with melamine via thermal treatment,(ii)incorporation of the lowest amount of FePc reported in the literature via incipient wetness impregnation followed by thermal treatment and(iii) functionalization with melamine followed by Fe Pc incorporation.The chemical and textural characterization of the prepared materials and their electrochemical assessment allowed to understand the role of microporosity in the incorporation of FePc and its effect on the oxygen reduction reaction(ORR). It was observed that FePc was preferentially incorporated inside the porous structure, especially in samples with more developed microporosity. However, functionalization with melamine modified the textural properties and the surface chemistry, favoring the incorporation of FePc on the surface. Regarding the electrochemical performance, the presence of FePc greatly enhanced the electroactivity of the microporous catalysts. An onset potential of 0.88 V and a four-electron pathway were obtained for glucose-derived carbons, whereas the limiting current densities and kinetic current densities rose by 126% and 222%, respectively, in comparison to the base sample. Notwithstanding, the highest electrochemical activity was observed for the sample prepared with CNTs, due to the synergy between the active metal centers and their highly graphitic carbon structure. The electrochemical parameters of CNTFeP csurpass the commercial Pt/C. The half-wave potential is 40 mV higher, the limiting current density increases by 17%, and a negligible production of by-products(< 1%) was observed.展开更多
An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicat...An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicated that AF was reliable in treating diluted CGW,while its efficiency and stability were seriously reduced when directly treating raw CGW.However,its performance could be greatly enhanced by effluent recirculation.Under optimal effluent recirculation of 0.5 to the influent,concentrations of chemical oxygen demand(COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L,respectively.Also,the rate of methane production reached 169.0 m L CH_4/L/day.Though CGW seemed to restrain the growth of anaerobic microorganisms,especially methanogens,the inhibition was temporary and reversible,and anaerobic bacteria presented strong tolerance.The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater(GW).However,the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication.By analysis using the Haldane model,it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters,but only suitable effluent recirculation could result in high methanogenic activity.展开更多
基金“UniRCell”,with the reference POCI-01-0145-FEDER-016422“AIProcMat@N2020–Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”,with the reference NORTE-010145-FEDER-000006,supported by Norte Portugal Regional Operational Programme(NORTE 2020),under the Portugal 2020 Partnership Agreement,through the European Regional Development Fund(ERDF)+1 种基金Base Funding–UIDB/50020/2020 of the Associate Laboratory LSRE-LCM–funded by national funds through FCT/MCTES(PIDDAC)PDEQB(PD9989)。
文摘Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon nanotubes(CNTs) were functionalized with melamine and/or iron(Ⅱ) phthalocyanine(FePc)following three different methodologies:(i) Functionalization with melamine via thermal treatment,(ii)incorporation of the lowest amount of FePc reported in the literature via incipient wetness impregnation followed by thermal treatment and(iii) functionalization with melamine followed by Fe Pc incorporation.The chemical and textural characterization of the prepared materials and their electrochemical assessment allowed to understand the role of microporosity in the incorporation of FePc and its effect on the oxygen reduction reaction(ORR). It was observed that FePc was preferentially incorporated inside the porous structure, especially in samples with more developed microporosity. However, functionalization with melamine modified the textural properties and the surface chemistry, favoring the incorporation of FePc on the surface. Regarding the electrochemical performance, the presence of FePc greatly enhanced the electroactivity of the microporous catalysts. An onset potential of 0.88 V and a four-electron pathway were obtained for glucose-derived carbons, whereas the limiting current densities and kinetic current densities rose by 126% and 222%, respectively, in comparison to the base sample. Notwithstanding, the highest electrochemical activity was observed for the sample prepared with CNTs, due to the synergy between the active metal centers and their highly graphitic carbon structure. The electrochemical parameters of CNTFeP csurpass the commercial Pt/C. The half-wave potential is 40 mV higher, the limiting current density increases by 17%, and a negligible production of by-products(< 1%) was observed.
文摘An advanced anaerobic biofilter(AF) was introduced for the treatment of coal gasification wastewater(CGW),and effluent recirculation was adopted to enhance phenol removal and methane production.The results indicated that AF was reliable in treating diluted CGW,while its efficiency and stability were seriously reduced when directly treating raw CGW.However,its performance could be greatly enhanced by effluent recirculation.Under optimal effluent recirculation of 0.5 to the influent,concentrations of chemical oxygen demand(COD) and total phenol in the effluent could reach as low as 234.0 and 14.2 mg/L,respectively.Also,the rate of methane production reached 169.0 m L CH_4/L/day.Though CGW seemed to restrain the growth of anaerobic microorganisms,especially methanogens,the inhibition was temporary and reversible,and anaerobic bacteria presented strong tolerance.The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater(GW).However,the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication.By analysis using the Haldane model,it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters,but only suitable effluent recirculation could result in high methanogenic activity.