The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which la...The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.展开更多
In this paper,the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a doubletube experiment system.The two tubes had the sam...In this paper,the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a doubletube experiment system.The two tubes had the same structure,and their closed ends were installed with a plasma generator and a spark plug,respectively.The propagation characteristics of the flame were measured by pressure sensors and ion probes.The experiment results show that,compared with a spark plug,the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully,it also heightened the pressure value of detonation wave.Meanwhile,the detonation wave development time and the entire flame propagation time were reduced by half.All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied.展开更多
Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructure...Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS.展开更多
A nonlinear terrain following(TF) and terrain avoidance(TA) controller is proposed for missile control systems.Based on classical TF algorithm (adaptive angle method), a new method for TF controller is proposed by usi...A nonlinear terrain following(TF) and terrain avoidance(TA) controller is proposed for missile control systems.Based on classical TF algorithm (adaptive angle method), a new method for TF controller is proposed by using angle of attack. A method of obtaining terrain outline data from digital elevation map (DEM) for TF control is discussed in order to save store space. A TA algorithm is proposed by using bank-to-turn technique. The block control model, which is suitable for backstepping design, is given for nonlinear model of missile. Making full use of the characteristics of the system and combining block control principle and backstepping technique, a robust controller design method is proposed. Uncertainties in every sub-block are allowed, and can be canceled by using the idea of nonlinear damping. It is proved that the state tracking errors are converged to a neighborhood of the origin exponentially. Finally, nonlinear six-degree-of-freedom simulation results for the missile model are presented to demonstrate the effectiveness of the proposed control law.展开更多
Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating cur...Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.展开更多
Development of magnetohydrodynamic acceleration technology is expected to improve wind tunnel simulation capability and testing capability.The underlying premise is to produce uniform and stable plasma in supersonic a...Development of magnetohydrodynamic acceleration technology is expected to improve wind tunnel simulation capability and testing capability.The underlying premise is to produce uniform and stable plasma in supersonic air flow,and gas discharge is an effective way to achieve this.A nanosecond pulsed discharge experimental system under supersonic conditions was established,and a pin-to-plate nanosecond pulsed discharge experiment in Mach 2 air flow was performed to verify that the proposed method produced uniform and stable plasma under supersonic conditions.The results show that the discharge under supersonic conditions was stable overall,but uniformity was not as good as that under static conditions.Increasing the number of pins improved discharge uniformity,but reduced discharge intensity and hence plasma density.Under multi-pin conditions at 1000Hz,the discharge was almost completely corona discharge,with the main current component being the displacement current,which was smaller than that under static conditions.展开更多
Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to io...Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to ionize the Mach number 3.5 (650 m/s), 0.023 kg/m(3) airflow. In a MHD channel of 16 mm x 10 mm x 20 mm, MHD open voltage of 10 V is realized in the magnetic field of 1.25 T, and power of 0.12 mW is extracted steadily and continuously in the magnetic field of 1 T. The reasons for limited power generation are proposed as: low conductivity of RF discharge; large touch resistance between MHD electrode and plasma; strong current eddies due to flow boundary layer. In addition, the cathode voltage fall is too low to have obvious effects on MHD power generation. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.展开更多
The standardization system is imperfect since the complexity of the medical devices and the specialty of the medical device industry in China. This paper describes the present situation of medical devices standardizat...The standardization system is imperfect since the complexity of the medical devices and the specialty of the medical device industry in China. This paper describes the present situation of medical devices standardization system in China,reviews and discusses the advantages and problems of the medical devices standardizatiom. It also presents some comments and suggestions to perfect the medical devices standardization system for enhancing the quality control of medical devices and for promoting the development of medical devices industry.展开更多
文摘The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.
基金supported by National Natural Science Foundation of China(No.51176001)
文摘In this paper,the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a doubletube experiment system.The two tubes had the same structure,and their closed ends were installed with a plasma generator and a spark plug,respectively.The propagation characteristics of the flame were measured by pressure sensors and ion probes.The experiment results show that,compared with a spark plug,the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully,it also heightened the pressure value of detonation wave.Meanwhile,the detonation wave development time and the entire flame propagation time were reduced by half.All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied.
基金the Innovation Foundation of Postgraduate of Jiangsu Province,China(No.CX08B_134Z)Beforehand Research Fund of Defense Technology(No.404040301)The Fundamental Research Funds for the Central Universities(No.NUST2011XQTR13)
文摘Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS.
文摘A nonlinear terrain following(TF) and terrain avoidance(TA) controller is proposed for missile control systems.Based on classical TF algorithm (adaptive angle method), a new method for TF controller is proposed by using angle of attack. A method of obtaining terrain outline data from digital elevation map (DEM) for TF control is discussed in order to save store space. A TA algorithm is proposed by using bank-to-turn technique. The block control model, which is suitable for backstepping design, is given for nonlinear model of missile. Making full use of the characteristics of the system and combining block control principle and backstepping technique, a robust controller design method is proposed. Uncertainties in every sub-block are allowed, and can be canceled by using the idea of nonlinear damping. It is proved that the state tracking errors are converged to a neighborhood of the origin exponentially. Finally, nonlinear six-degree-of-freedom simulation results for the missile model are presented to demonstrate the effectiveness of the proposed control law.
基金supported by National Natural Science Foundation of China(No.51176001)
文摘Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma.
基金National Natural Science Foundation of China (Nos. 11372352, 51776222)the China Postdoctoral Science Foundation (Nos. 2017T100772, 2016M590972).
文摘Development of magnetohydrodynamic acceleration technology is expected to improve wind tunnel simulation capability and testing capability.The underlying premise is to produce uniform and stable plasma in supersonic air flow,and gas discharge is an effective way to achieve this.A nanosecond pulsed discharge experimental system under supersonic conditions was established,and a pin-to-plate nanosecond pulsed discharge experiment in Mach 2 air flow was performed to verify that the proposed method produced uniform and stable plasma under supersonic conditions.The results show that the discharge under supersonic conditions was stable overall,but uniformity was not as good as that under static conditions.Increasing the number of pins improved discharge uniformity,but reduced discharge intensity and hence plasma density.Under multi-pin conditions at 1000Hz,the discharge was almost completely corona discharge,with the main current component being the displacement current,which was smaller than that under static conditions.
基金co-supported by the National Natural Science Foundation of China (No. 11372352)the Shaanxi Province Science Foundation of China (No. 2013JQ1016)
文摘Magnetohydrodynamic (MHD) power generation with supersonic non-equilibrium plasma is demonstrated. Capacitively coupled radio frequency (RF) discharge (6 MHz, maximum continual power output of 200 W) was adopted to ionize the Mach number 3.5 (650 m/s), 0.023 kg/m(3) airflow. In a MHD channel of 16 mm x 10 mm x 20 mm, MHD open voltage of 10 V is realized in the magnetic field of 1.25 T, and power of 0.12 mW is extracted steadily and continuously in the magnetic field of 1 T. The reasons for limited power generation are proposed as: low conductivity of RF discharge; large touch resistance between MHD electrode and plasma; strong current eddies due to flow boundary layer. In addition, the cathode voltage fall is too low to have obvious effects on MHD power generation. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd.
文摘The standardization system is imperfect since the complexity of the medical devices and the specialty of the medical device industry in China. This paper describes the present situation of medical devices standardization system in China,reviews and discusses the advantages and problems of the medical devices standardizatiom. It also presents some comments and suggestions to perfect the medical devices standardization system for enhancing the quality control of medical devices and for promoting the development of medical devices industry.